• 제목/요약/키워드: WAFER

검색결과 3,161건 처리시간 0.028초

반도체 팹에서의 투입 로트 구성을 위한 다차원 동적계획 알고리듬 (Multi-Dimensional Dynamic Programming Algorithm for Input Lot Formation in a Semiconductor Wafer Fabrication Facility)

  • 방준영;임승길;김재곤
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.73-80
    • /
    • 2016
  • This study focuses on the formation of input release lots in a semiconductor wafer fabrication facility. After the order-lot pegging process assigns lots in the fab to orders and calculates the required quantity of wafers for each product type to meet customers' orders, the decisions on the formation of input release lots should be made to minimize the production costs of the release lots. Since the number of lots being processed in the wafer fab directly is related to the productivity of the wafer fab, the input lot formation is crucial process to reduce the production costs as well as to improve the efficiency of the wafer fab. Here, the input lot formation occurs before every shift begins in the semiconductor wafer fab. When input quantities (of wafers) for product types are given from results of the order-lot pegging process, lots to be released into the wafer fab should be formed satisfying the lot size requirements. Here, the production cost of a homogeneous lot of the same type of product is less than that of a heterogeneous lot that will be split into the number of lots according to their product types after passing the branch point during the wafer fabrication process. Also, more production cost occurs if a lot becomes more heterogeneous. We developed a multi-dimensional dynamic programming algorithm for the input lot formation problem and showed how to apply the algorithm to solve the problem optimally with an example problem instance. It is necessary to reduce the number of states at each stage in the DP algorithm for practical use. Also, we can apply the proposed DP algorithm together with lot release rules such as CONWIP and UNIFORM.

NOVA System을 이용한 CMP Automation에 관한 연구 (The Study for the CMP Automation with Nova Measurement System)

  • 김상용;정헌상;박민우;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.176-180
    • /
    • 2001
  • There are several factors causing re-work in CMP process such as improper polish time calculation by operator. removal rate decline of the polisher, unstable in-suit pad conditioning, slurry supply module problem and wafer carrier rotation inconsistancy. And conclusively those fundimental reason for the re-work rate increasement is mainly from the cycle time delay between wafer polish and post measurement. Therefore, Wafer thickness measurement in wet condition could be able to remove those improper process conditions which may happen during the process in comparison with the conventional dried wafer measurement system and it can be able to reduce the CMP process cycle time. CMP scrap reduction by overpolish, re-work rate reduction, thickness control efficiency also can be easily achieved. CMP Equipment manufacturer also trying to develop integrated system which has multi-head & platen, cleaner, pre & post thickness measure and even control the polish time from the calculated removal rate of each polishing head by software. CMP re-work problem such as over & under polish by target thickness may result in the cycle time delay. By reducing those inefficient factors during the process and establish of the automatic process control, CLC system need to be adopted to maximize the process performance. Wafer to Wafer Polish Time Feed Back Control by measuring the wafer right after the polish shorten the polish time calculation for the next wafer and it lead to the perfact Post CMP target thickness control capability. By Monitoring all of the processed the wafer, CMP process will also be stabilize itself.

  • PDF

실리콘 용탕으로부터 직접 제조된 태양광용 다결정 실리콘의 SiC 오염 연구 (SiC Contaminations in Polycrystalline-Silicon Wafer Directly Grown from Si Melt for Photovoltaic Applications)

  • 이예능;장보윤;이진석;김준수;안영수;윤우영
    • 한국주조공학회지
    • /
    • 제33권2호
    • /
    • pp.69-74
    • /
    • 2013
  • Silicon (Si) wafer was grown by using direct growth from Si melt and contaminations of wafer during the process were investigated. In our process, BN was coated inside of all graphite parts including crucible in system to prevent carbon contamination. In addition, coated BN layer enhance the wettability, which ensures the favorable shape of grown wafer by proper flow of Si melt in casting mold. As a result, polycrystalline silicon wafer with dimension of $156{\times}156$ mm and thickness of $300{\pm}20$ um was successively obtained. There were, however, severe contaminations such as BN and SiC on surface of the as-grown wafer. While BN powders were easily removed by brushing surface, SiC could not be eliminated. As a result of BN analysis, C source for SiC was from binder contained in BN slurry. Therefore, to eliminate those C sources, additional flushing process was carried out before Si was melted. By adding 3-times flushing processes, SiC was not detected on the surface of as-grown Si wafer. Polycrystalline Si wafer directly grown from Si melt in this study can be applied for the cost-effective Si solar cells.

실리콘웨이퍼 평탄도 추정 알고리즘을 위한 디지털 컨덴츠에 관한 연구 (A study on the Digital contents for Estimated Thickness Algorithm of Silicon wafer)

  • 송은지
    • 디지털콘텐츠학회 논문지
    • /
    • 제5권4호
    • /
    • pp.251-256
    • /
    • 2004
  • 반도체 집적회로를 만드는 토대가 되는 실리콘 웨이퍼의 표면은 고품질 회로를 구성하기 위해 극도의 평탄도가 요구되므로 평탄도는 양질의 웨이퍼를 보증하는 가장 중요한 요소이다. 따라서 실리콘웨이퍼 생산의 10개의 공정 중 거칠어진 웨이퍼 표면을 고도의 평탄도를 갖도록 연마하는 폴리싱공정은 매우 중요시 되는 생산라인이다. 현재 이 공정에서는 담당 엔지니어가 웨이퍼의 모형을 측정장비의 모니터에서 육안으로 관찰하여 판단하고 평탄도를 높이기 위한 제어를 하고 있다. 그러나 사람에 의한 것이므로 많은 경험이 필요하고 일일이 체크해야하는 번거로움이 있다. 본 연구는 이러한 비효율적인 작업의 효율화를 위해 웨이퍼의 모형을 디지털 컨텐츠화하여 폴리싱 공정에 있어 평탄도를 사람이 아닌 시스템에 의해 자동으로 측정하여 제어하는 알고리즘을 제안한다. 또한 제안한 전체 웨이퍼 평탄도 추정알고리즘을 토대로 실제 현장에서 쓰이는 웨이퍼 각 사이트별 평탄도를 측정하기 위한 사이트두께 추정 알고리즘을 제안한다.

  • PDF

웨이퍼 레벨 적층 공정에서 웨이퍼 휘어짐이 정렬 오차에 미치는 영향 (Effects of Wafer Warpage on the Misalignment in Wafer Level Stacking Process)

  • 신소원;박만석;김사라은경;김성동
    • 마이크로전자및패키징학회지
    • /
    • 제20권3호
    • /
    • pp.71-74
    • /
    • 2013
  • 본 연구에서는 웨이퍼 레벨 적층 과정에서 발생하는 웨이퍼 오정렬(misalignment) 현상과 웨이퍼 휘어짐(warpage)과의 관계에 대해서 조사하였다. $0.5{\mu}m$ 두께의 구리 박막 증착을 통해 최대 $45{\mu}m$의 휨 크기(bow height)를 갖는 웨이퍼를 제작하였으며, 이 휘어진 웨이퍼와 일반 웨이퍼를 본딩하였을 때 $6{\sim}15{\mu}m$ 정도의 정렬 오차가 발생하였다. 이는 약 $5{\mu}m$의 웨이퍼 확장(expansion)과 약 $10{\mu}m$의 미끄러짐(slip)의 복합 거동으로 설명할 수 있으며, 웨이퍼 휘어짐의 경우 확장 오정렬보다 본딩 과정에서의 미끄러짐 오정렬에 주로 기여하는 것으로 보인다.

N타입 결정질 실리콘 웨이퍼 두께 및 알루미늄 페이스트 도포량 변화에 따른 Bowing 및 Al doped p+ layer 형성 분석 (Analysis on Bowing and Formation of Al Doped P+ Layer by Changes of Thickness of N-type Wafer and Amount of Al Paste)

  • 박태준;변종민;김영도
    • 한국재료학회지
    • /
    • 제25권1호
    • /
    • pp.16-20
    • /
    • 2015
  • In this study, in order to improve the efficiency of n-type monocrystalline solar cells with an Alu-cell structure, we investigate the effect of the amount of Al paste in thin n-type monocrystalline wafers with thicknesses of $120{\mu}m$, $130{\mu}m$, $140{\mu}m$. Formation of the Al doped $p^+$ layer and wafer bowing occurred from the formation process of the Al back electrode was analyzed. Changing the amount of Al paste increased the thickness of the Al doped $p^+$ layer, and sheet resistivity decreased; however, wafer bowing increased due to the thermal expansion coefficient between the Al paste and the c-Si wafer. With the application of $5.34mg/cm^2$ of Al paste, wafer bowing in a thickness of $140{\mu}m$ reached a maximum of 2.9 mm and wafer bowing in a thickness of $120{\mu}m$ reached a maximum of 4 mm. The study's results suggest that when considering uniformity and thickness of an Al doped $p^+$ layer, sheet resistivity, and wafer bowing, the appropriate amount of Al paste for formation of the Al back electrode is $4.72mg/cm^2$ in a wafer with a thickness of $120{\mu}m$.

NOVA System을 이용한 CMP Automation에 관한 연구 (The Study for the CMP Automation wish Nova Measurement system)

  • 김상용;정헌상;박민우;김창일;장의구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.176-180
    • /
    • 2001
  • There are several factors causing re-work in CMP process such as improper polish time calculation by operator, removal rate decline of the polisher, unstable in-suit pad conditioning, slurry supply module problem and wafer carrier rotation inconsistency. And conclusively those fundimental reason for the re-work rate increasement is mainly from the cycle time delay between wafer polish and post measurement. Therefore, Wafer thickness measurement in wet condition could be able to remove those improper process conditions which may happen during the process in comparison with the conventional dried wafer measurement system and it can be able to reduce the CMP process cycle time. CMP scrap reduction by overpolish, re-work rate reduction, thickness control efficiency also can be easily achieved. CMP Equipment manufacturer also trying to develop integrated system which has multi-head & platen, cleaner, pre & post thickness measure and even control the polish time from the calculated removal rate of each polishing head by software. CMP re-work problem such as over & under polish by target thickness may result in the cycle time delay. By reducing those inefficient factors during the process and establish of the automatic process control, CLC system need to be adopted to maximize the process performance. Wafer to Wafer Polish Time Feed Back Control by measuring the wafer right after the polish shorten the polish time calculation for the next wafer and it lead to the perfect Post CMP target thickness control capability. By Monitoring all of the processed the wafer, CMP process will also be stabilize itself.

  • PDF

Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals

  • Gutmann, R.J.;Zeng, A.Y.;Devarajan, S.;Lu, J.Q.;Rose, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제4권3호
    • /
    • pp.196-203
    • /
    • 2004
  • A three-dimensional (3D) IC technology platform is presented for high-performance, low-cost heterogeneous integration of silicon ICs. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. Daisy-chain inter-wafer via test structures and compatibility of the process steps with 130 nm CMOS sal devices and circuits indicate the viability of the process flow. Such 3D integration with through-die vias enables high functionality in intelligent wireless terminals, as vertical integration of processor, large memory, image sensors and RF/microwave transceivers can be achieved with silicon-based ICs (Si CMOS and/or SiGe BiCMOS). Two examples of such capability are highlighted: memory-intensive Si CMOS digital processors with large L2 caches and SiGe BiCMOS pipelined A/D converters. A comparison of wafer-level 3D integration 'lith system-on-a-chip (SoC) and system-in-a-package (SiP) implementations is presented.

Warpage Simulation by the CTE mismatch in Blanket Structured Wafer Level 3D packaging

  • Kim, Seong Keol;Jang, Chong-Min;Hwang, Jung-Min;Park, Man-Chul
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.168-172
    • /
    • 2013
  • In 3D wafer-stacking technology, one of the major issues is wafer warpage. Especially, The important reason of warpage has been known due to CTE(Coefficient of Thermal Expansion) mismatch between materials. It was too hard to choose how to make the FE model for blanket structured wafer level 3D packaging, because the thickness of each layer in wafer level 3D packaging was too small (micro meter or nano meter scale) comparing with diameter of wafer (6 or 8 inches). In this study, the FE model using the shell element was selected and simulated by the ANSYS WorkBench to investigate effects of the CTE on the warpage. To verify the FE model, it was compared by experimental results.

SOI 핸들 웨이퍼에 고정된 광다이오드를 가진 SOI CMOS 이미지 센서 (SOI CMOS image sensor with pinned photodiode on handle wafer)

  • 조용수;최시영
    • 센서학회지
    • /
    • 제15권5호
    • /
    • pp.341-346
    • /
    • 2006
  • We have fabricated SOI CMOS active pixel image sensor with the pinned photodiode on handle wafer in order to reduce dark currents and improve spectral response. The structure of the active pixel image sensor is 4 transistors APS which consists of a reset and source follower transistor on seed wafer, and is comprised of the photodiode, transfer gate, and floating diffusion on handle wafer. The source of dark current caused by the interface traps located on the surface of a photodiode is able to be eliminated, as we apply the pinned photodiode. The source of dark currents between shallow trench isolation and the depletion region of a photodiode can be also eliminated by the planner process of the hybrid bulk/SOI structure. The photodiode could be optimized for better spectral response because the process of a photodiode on handle wafer is independent of that of transistors on seed wafer. The dark current was about 6 pA at 3.3 V of floating diffusion voltage in the case of transfer gate TX = 0 V and TX=3.3 V, respectively. The spectral response of the pinned photodiode was observed flat in the wavelength range from green to red.