• Title/Summary/Keyword: Von mises stress

Search Result 535, Processing Time 0.03 seconds

Optimal design of car suspension springs by using a response surface method (반응 표면 분석법을 활용한 자동차용 현가스프링 최적화 설계)

  • Yoo, Dong-Woo;Kim, Do-Yeop;Shin, Dong-Gyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.246-255
    • /
    • 2016
  • When spring of the suspension is exerted by an external load, a car should be designed to prevent predictable damages and designed for a ride comfort. We used experiments design to design VON-MISES STRESS and K, a constant, of spring of suspension which is installed in a car as a goal level. We analyzed the result from Edison's Elastic - Plastic Analysis SW(CSD_EPLAST) by setting D, d, n as external diameter of coil, internal diameter of coil, the number of total coil respectively. The experiment design let the outcome be as Full-second order by using Box-Behnken which is one of response surface methods. Experimented and analyzed results based on the established experiments design, We found out design parameter which has desired VON-MISES STRESS and the constant K. Additionally, we predicted life time of when the external load was exerted by repeated load by using fatigue equation, and verification of plastic deformation has also been made. Additionally we interpreted a model, which is formed by optimized design parameter, with linear analysis and non-linear analysis, at the same time we also analyzed plastic deformation with the values from the both models. Finally, we predicted fatigue life of optimized model by using fatigue estimation theory and also evaluated a ride comfort with oscillation analysis.

  • PDF

Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study

  • Farzampour, Alireza;Eatherton, Matthew R.;Mansouri, Iman;Hu, Jong Wan
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Structural fuses are made up from oriented steel plates to be used to resist seismic force with shear loading resistance capabilities. The damage and excessive inelastic deformations are concentrated in structural fuses to avoid any issues for the rest of the surrounding elements. Recently developed fuse plates are designed with engineered cutouts leaving flexural or shear links with controlled yielding features. A promising type of link is proposed to align better bending strength along the length of the link with the demand moment diagram is a butterfly-shaped link. Previously, the design methodologies are purely based on the flexural stresses, or shear stresses only, which overestimate the dampers capability for resisting against the applied loadings. This study is specifically focused on the optimized design methodologies for commonly used butterfly-shaped dampers. Numerous studies have shown that the stresses are not uniformly distributed along the length of the dampers; hence, the design methodology and the effective implementation of the steel need revisions and improvements. In this study, the effect of shear and flexural stresses on the behavior of butterfly-shaped links are computationally investigated. The mathematical models based on von-Mises yielding criteria are initially developed and the optimized design methodology is proposed based on the yielding criterion. The optimized design is refined and investigated with the aid of computational investigations in the next step. The proposed design methodology meets the needs of optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel.

Behavior characteristics of hydrogen storage vessel(TYPE 1) under gas pressure and temperature conditions using FEM (유한요소법을 이용한 수소저장용기 TYPE 1의 압력과 온도조건에 의한 거동특성 연구)

  • Cho, Seunghyun;Kim, Young Gyu;Ko, Young Bae;Lee, Il Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.61-69
    • /
    • 2020
  • This paper is a study of the behavior characteristics that occur in the hydrogen storage vessel TYPE 1 according to pressure and temperature conditions by FEM(Finite element method). Von Mises stress (VMS) generated at the highest pressure was compared with Yield strength (YS) of the material for structural safety assessment of the container, and the results of plastic strain energy density (PSED) were analyzed as basic data for life expectancy. According to the analysis results, the safety of the hydrogen gas storage vessel is not ensured due to the occurrence of VMS higher than the yield strength on the bottom of the storage container at a gas pressure of 40 Mpa or higher. In addition, the results of VMS caused by temperature conditions are very low and the behavior by temperature can be ignored. The maximum pressure of VMS/YS below 1 is calculated to be about 30 Mpa, indicating that the hydrogen storage container subject to this paper should be managed with a gas charging pressure of less than 30 Mpa.

A Numerical Analysis on the Stress Behavior Characteristics of a Pressure Vessel for Hydrogen Filling by FEM (유한요소법을 이용한 수소충전용 압력용기의 응력 거동특성에 관한 수치적 연구)

  • Chol, Seunghyun;Byonl, Sung Kwang;Kim, Yun Tae;Choi, Ha Young
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.38-44
    • /
    • 2022
  • As the supply of hydrogen charging stations for hydrogen supply accelerates due to the hydrogen economy revitalization policy, the risk of accidents is also increasing. Since most hydrogen explosion accidents lead to major accidents, it is very important to secure safety when using hydrogen energy. In order to utilize hydrogen energy, it is essential to secure the safety of hydrogen storage containers used for production, storage, and transportation of liquid hydrogen. In this paper, in order to evaluate the structural safety of a hydrogen-filled pressure vessel, the behavioral characteristics of gas pressure were analyzed by finite element analysis. SA-372 Grade J / Class 70 was used for the material of the pressure vessel, and a hexahedral mesh was applied in the analysis model considering only the 1/4 shape because the pressure vessel is axisymmetric. A finite element analysis was performed at the maximum pressure using a hydrogen gas pressure vessel, and the von Mises stress, deformation, and strain energy density of the vessel were observed.

FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION ACCORDING TO THE METHOD OF RESTORATION AFTER ROOT CANAL THERAPY (상악 중절치 근관치료후 수복 방법에 따른 응력 분포의 유한 요소 분석)

  • Lee, Jae-Young;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.549-567
    • /
    • 1994
  • Restoration of severly damaged teeth after endodontic treatment had been an interest to many dentists, and it is a fact that there have been lots of studies about it. In these days, although we have used Para-Post, pins, threaded steel post, cast gold post and core, and so on, as a method of restoration frequently, it has been in controversy with the influence of them on the teeth and surrounding periodontal tissue. In this study, we assume that the crown of the upper incisor have severly damaged, so, after the root canal therapy, 4 types of restoration had been carried out; 1) coronal-radicular amalgam restoration, 2) after setting up the Para-Post, restore with composite resin core only, 3) after setting up the Para-Post; restore with amalgam core, then cover with the PPM crown 4) after setting up the Para-Post, restore with composite core, then cover with the PPM crown. After restoration, in order to observe the concentration of stress at internal portion of the teeth and the sourrounding periodontal tissue, developing a 2-dimensional finite element model of labiopalatal section, then loading forces from 3 direction - direction of 45 degrees from lingual side near the incisal edge, horizontal direction from labial height of contour, vertical direction at the incisal edge-were applied. The analyzed results were as follows: 1. Stress of the normal central incisor was concentrated on the dentin aroundpulp chamber, labiocervical portion of a tooth and root apex, but with the alveolar bone, in the case of load from the direction of 45 degrees from lingual side near the incisal edge showed remarkable concentration of stress: 2. Coronal-radicular amalgam technique -showed less concentration of stress on the root and surrounding periodontal tissue than the restoration with the Para-Post. 3. The von Mises equivalent stress on the Para-Post showed maximum value at root-core junction rather than both ends and model with PPM restoration with amalgam core showed the least concentration of stress. Only the force from horizontal direction showed large shear stress on internal portion of the root, root apex and alveolar bone. 4. PPM crown with composite core rarely showed the concentration of stress on root and periodontal tissue. 5. As for alveolar bone, remarkable shear stress was concentrated on labial and palatal side by horizontal load.

  • PDF

A Study on the Stress Distribution of Tooth/Implant Connected with Konus Telescope Denture Using 3-Dimensional Finite Element Method (이중관으로 연결된 자연치와 임플랜트의 악골 내응력분포에 관한 3차원 유한요소분석)

  • Lee, Su-Ok;Choi, Dae-Gyun;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.381-395
    • /
    • 2008
  • Purpoose: For decades dental implants have been used widely in the field of prosthetic dentistry. However there is confusion when establishing treatment plans in cases where some teeth are remained but an insufficient number of implants can be used due to limited anatomical status and ecomomical problems. Many clinicians have tried to connect natural teeth and implants, and it still has controversy. But, there have been few studies on mechanical analysis of connecting natural teeth and implants with konus telescopic removable partial dentures. The purpose of this study was to analyze the stress distribution of prosthesis, abutment and alveolar bone when teeth and implants were connected with the konus telescopic denture, by means of 3-dimensional finite element analysis. Material and methods: The assumption of this study was that there were 2 mandibular canine (11 mm in length, 4 mm in diameter) and 2 implants(10 mm in length, 4 mm in diameter) which are located in the second premolar region. The mandible, teeth, implants, abutments, and connectors are modeled, and analyzed with the commercial software, ANSYS Version 8.1(Swanson, Inc., USA). The control group used implants instead of natural teeth. 21038 elements, 23544 nodes were used in experimental group and 107595 elements, 21963 nodes were used in control group, Stress distribution was evaluated under 150 N vertical load on 3 experimental conditions - between teeth and implants (Load case 1), posterior to implants (Load case 2), between natural teeth (Load case 3). Results: 1. In all load cases, higher von mises stress value was observed in the experimental group. 2. Maximum von miss stress observed in all load cases and all locations were as follows ; a. 929.44 Mpa in the experimental group, 640.044 Mpa in the control group in outer crown and connector - The experimental group showed 1.45 times high value compared with the control group. b. 145,051 Mpa in the experimental group, 142.338 Mpa in the control group in abutment - The experimental group showed 1.02times high value compared with the control group. c. 32.489 Mpa in the experimental group, 25.765 Mpa in the control group in alveolar bone - The experimental group showed 1.26times higher value compared with the control group. 3. All maximum von mises stress was observed in load case 2, and maxim von mises stress in alveolar bone was 32.489 Mpa at which implant failure cannot occur. 4. If maximum von mises stress is compared between two groups, the value of the experimental group is 1.02 times higher than the control group in abutment, 1.26 times higher than the control group in alveolar bone. Conclusion: If natural teeth and implants are connected with the konus telescopic denture, maximum stress will be similar in abutment, 1.26 times higher in alveolar bone than the control group. With this result, there may be possible to make to avoid konus telescopic dentures where natural teeth and implants exist together.

Three dimensional finite element method for stress distribution on the length and diameter of orthodontic miniscrew and cortical bone thickness (교정용 미니스크류 식립 시 스크류의 길이, 직경 및 피질골 두께에 따른 응력 분포에 관한 3차원 유한요소법적 연구)

  • Lim, Jong-Won;Kim, Wang-Sik;Kim, Il-Kyu;Son, Choong-Yul;Byun, Hyo-In
    • The korean journal of orthodontics
    • /
    • v.33 no.1 s.96
    • /
    • pp.11-20
    • /
    • 2003
  • The purpose of the present study is to evaluate the stress distribution on the length and diameter of the miniscrew and cortical bone width. Three dimensional finite element models were made of diameter 1.2mm, 1.6mm, 2.0mm and length 6.0mm, 8.0mm, 10.0mm, 12.0mm and cortical bone width 1.0mm. Also, another three dimensional finite element models were made of diameter 1.2mm, 1.6mm, 2.0mm and length 8.0mm and cortical bone width 1.0mm, 1.5mm, 2.0mm, 2.5mm. Two-hundred grams horizontal force were applied on the center of the miniscrew head and at that stress distribution and its magnitude had been analyzed by ANSYS, which is three dimensional finite element analysis program. The obtained results were as follows : 1. The comparison of the maximum von-Mises stress in the miniscrew showed that as the diameter increases from 1.2mm to 2.0mm stress has been decreased, while on the same diameter stress was not changed regardless of the length change. 2. The comparison of the maximum von-Mises stress in the cortical and cancellous bone showed that as the diameter increases from 1.2mm to 2.0mm stress has been decreased, while on the same diameter stress was not changed regardless of the length change. 3. In the analysis of the stress distribution in the cortical and cancellous bone, the most of the stress had been absorbed in the cortical bone, and did not transmitted much to the cancellous bone. 4. In the analysis of the maximum von-Mises stress according to the cortical bone width, the same diameter of the miniscrew showed a constant stress value regardless of the cortical bone width change. The above results suggest that the maintenance of the miniscrew is more reliable on diameter than length of the miniscrew.

Application of Stress Optimization for Preventing the Delamination of the Plastic IC Package in Reflow Soldering Process (리플로 납땜과정에서 플라스틱 IC 패키지의 박리방지를 위한 응력최적설계의 적용)

  • Kim, Geun-Woo;Lee, Kang-Yong;Kim, Ok-Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.709-716
    • /
    • 2004
  • In order to prevent the interface delamination of an plastic IC package in the infrared (IR) soldering process, we tried to reduce stress by parameterization, sensitivity analysis and unconstraint optimization. The design variables of dimensions and material properties are determined among all the possible variables from the parametric study. Their optimized values are determined by applying the unconstraint optimization to the parameterized IC package. The maximum von-Mises stress value decreases greatly by optimum design.

A Study on the Characteristics of Stress Distribution of 3-kinds of holes on a cantilever (외팔보에서 3가지 홀의 형상변화에 따른 음력분포특성에 관한 연구)

  • 최경호;권영석;홍도관;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.757-760
    • /
    • 2002
  • In this study, 3 kinds of holes (square, circular and elliptic holes) are attempted on a cantilever to reduce the weight by 30%. Maximum Von-Mises stresses of cantilever plate with 3 kinds of holes are investigated. For the elliptic holes, a shape optimization is attempted to fad the optimum angle of axis by rotating the axis by $10^{\circ}\; from\; 50^{\circ}\; to\; 120^{\circ}\;$ From the results, it is known that the maximum stress is decreased to 0.868 MPa by rotation of the axis of elliptic hole and 0.26 MPa is decreased compared with the maximum stress occurred on the circular hole.

  • PDF

A Stochastic Analysis in Fatigue Strength of Degraded Steam Turbine Blade Steel (열화된 증기 터빈블레이드의 피로강도에 대한 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.262-267
    • /
    • 2001
  • In this study, the Reliability of degraded steam turbine blade was evaluated using the limited fatigue data. The statistical estimation of limited fatigue data implies that some unknown uncertainties which may be involved in fatigue reliability analysis. Therefore, an appropriate distribution in the fatigue strength was determined by the characteristic distribution - linear correlation coefficient, fatigue physics, error parameter. 3-parameter Weibull distribution is the most appropriate distribution to assume for infinite region. The load applied on the blade is mainly tensile. The maximum Von-Mises stress is 219.4 MPa at the steady state service condition. The failure probability($F_p$) derived from the strength-stress interference model using Monte carlo simulation under variable service condition is 0.25% at the 99.99% confidence level.

  • PDF