• Title/Summary/Keyword: Volumetric Ratio

Search Result 385, Processing Time 0.026 seconds

An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe (수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구)

  • 이진성;김철주;김선주;문석환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment (K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능)

  • Choi, Poo Reum;Jung, Ji Chul;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.460-467
    • /
    • 2016
  • Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by $K_2CO_3$ and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by $K_2CO_3$ activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of $CTP/K_2CO_3$ ratio, activation temperature, and activation period.

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Analysis of FRP-Confined Concrete According to Lateral Strain History (횡변형률 이력에 근거한 FRP-구속 콘크리트의 해석)

  • Cho, Soon-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.201-204
    • /
    • 2008
  • The proposed method, capable of predicting various stress-strain responses in axially loaded concrete confined with FRP (Fiber Reinforced Polymers) composites in a rational manner, is based on the fact that the volumetric expansion due to progressive microcracking in mechanically loaded concrete is an important measure of the extent of damage in the material microstructure. The elastic modulus expressed as a function of area strain and concrete porosity, the energy-balance equation relating the dilating concrete to the confining device interactively, the varying confining pressure, and an incremental calculation algorithm are included in the solution procedure. This procedure enables the evaluation of lateral strains consecutively according to the related mechanical model and the energy-balance equation, rather than using an empirically derived equation for Poisson's ratio or dilation rate as in other analytical methods.

  • PDF

Effect of Trehalose on Biological Membranes with Respect to Phase of the Membranes

  • Park, Jin-Won
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.103-107
    • /
    • 2017
  • The effect of the trehalose incorporation on the biological membranes was investigated with respect to the phase of the membranes using the fluorescence intensity change. Spherical phospholipid bilayers, vesicles, were prepared only with the variation in the phase of each layer via a double emulsion technique. In the aqueous inside of the vesicles, 8-Aminonaphthalene-1,3,6-trisulfonic acid disodium salt(ANTS) was encapsulated. As a quencher, p-Xylene-bis(N-pyridinium bromide)(DPX) was included in the buffer where the vesicles were dispersed. The fluorescence scale was calibrated with the fluorescence of ANTS vesicles in p-Xylene-bis(N-pyridinium bromide)(DPX)-included-buffer taken as 100% fluorescence and the mixture of ANTS and DPX in the buffer as 0% fluorescence. Trehalose injection into the vesicle solution led the distortion of the membrane. It was found that the distortion was related to the phase of each layer the vesicle up on the ratio of trehalose to lipid. In the identical measurements at glucose, the behavior of the distortion was completely different from that of trehalose. These results seem to depend on the stability of the vesicles, due to the osmotic and volumetric effects on the headgroup packing disruption.

Three-Dimensional Optical Encryption of Quick Response Code

  • Kim, Youngjun;Yun, Hui;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.153-159
    • /
    • 2018
  • In this paper, we present a three-dimensional (3D) optical encryption technique for quick response (QR) code using computational synthesized integral imaging, computational volumetric reconstruction, and double random phase encryption. Two-dimensional (2D) QR code has many advantages, such as enormous storage capacity and high reading speed. However, it does not protect primary information. Therefore, we present 3D optical encryption of QR code using double random phase encryption (DRPE) and an integral imaging technique for security enhancement. We divide 2D QR code into four parts with different depths. Then, 2D elemental images for each part of 2D QR code are generated by computer synthesized integral imaging. Generated 2D elemental images are encrypted using DRPE, and our method increases the level of security. To validate our method, we report simulations of 3D optical encryption of QR code. In addition, we calculated the peak side-lobe ratio (PSR) for performance evaluation.

Electrical Properties of DC Sputtered Titanium Nitride Films with Different Processing Conditions and Substrates

  • Jin, Yen;Kim, Young-Gu;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.455-460
    • /
    • 2005
  • Deposition of TiN$_{x}$ film was conducted with a DC sputtering technique. The effect of the processing parameters such as substrate temperature, deposition time, working pressure, bias power, and volumetric flowing rate ratio of Ar to N$_{2}$ gas on the resistivity of TiN$_{x}$ film was systematically investigated. Three kinds of substrates, soda-lime glass, (100) Si wafer, and 111m thermally grown (111) SiO$_{2}$ wafer were used to explore the effect of substrate. The phase of TiN$_{x}$ film was analyzed by XRD peak pattern and deposition rate was determined by measuring the thickness of TiNx film through SEM cross-sectional view. Resistance was obtained by 4 point probe method as a function of processing parameters and types of substrates. Finally, optimum condition for synthesizing TiN$_{x}$ film having lowest resistivity was discussed.

A Study on Combustion Characteristics of Spark-Ignited Engine with Different Late Intake Valve Closing for Miller Cycle (밀러사이클 적용 스파크점화기관의 후기 흡기밸브 닫힘각 변화에 따른 연소성능 연구)

  • Chung, J.H.;Kang, S.J.;Kim, J.S.;Jeong, S.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.141-148
    • /
    • 2015
  • In order to research engine characteristics of spark-ignited engine with intake valve closing timing change for Miller cycle, two cam for LIVC(Late Intake Valve Closing) were designed and fabricated an prototype valvetrain. And intake valve closing timing were adjusted to build low compressing and high expansion cycle for HEV. In experimental study, it were investigated with different engine speed, spark timing and air-fuel ratio to compare base cam and LIVC cam type. It was found that the volumetry efficiency and effective work of compression process were decreased in case of LIVC cam. When compared with the existing results, the maximum pressure in the cylinder was reduced about 12~13 bar and the volumetric efficiency was reduced about 16%.

Design and Performance Evaluation of Visualization System for Measuring the Void Fraction of Two-phase Flow (다상 유동 Void Fraction 가시화 장치 설계 및 성능 평가)

  • Choi, Chang-Hyun;Choi, Seong-Won;Song, Simon
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • A two-phase flow observed in a heat exchanger or nuclear power generation often has a profound effect on undesirable noise or flow characteristics. Void fraction, which refers to the ratio of gas (or liquid) to the total fluid, affects heat transfer coefficient, vibration and so forth. In other words, void fraction is one of most important parameters in two-phase flow since it contributes to comprehend the characteristics of two-phase flow. We developed a two-phase flow visualization system to measure cross-sectional and volumetric void fractions by using quick closing valves and image processing software. With this system, we could observe the plug, slug, and stratified flow patterns of two-phase flow and measure a myriad of void fractions. As a consequence of the experiment, we found that the estimated void fractions were largely coincident with the predictive values by Chisholm model.

Numerical and statistical analysis of permeability of concrete as a random heterogeneous composite

  • Zhou, Chunsheng;Li, Kefei
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.469-482
    • /
    • 2010
  • This paper investigates the concrete permeability through a numerical and statistical approach. Concrete is considered as a random heterogeneous composite of three phases: aggregates, interfacial transition zones (ITZ) and matrix. The paper begins with some classical bound and estimate theories applied to concrete permeability and the influence of ITZ on these bound and estimate values is discussed. Numerical samples for permeability analysis are established through random aggregate structure (RAS) scheme, each numerical sample containing randomly distributed aggregates coated with ITZ and dispersed in a homogeneous matrix. The volumetric fraction of aggregates is fixed and the size distribution of aggregates observes Fuller's curve. Then finite element method is used to solve the steady permeation problem on 2D numerical samples and the overall permeability is deduced from flux-pressure relation. The impact of ITZ on overall permeability is analyzed in terms of ITZ width and contrast ratio between ITZ and matrix permeabilities. Hereafter, 3680 samples are generated for 23 sample sizes and 4 contrast ratios, and statistical analysis is performed on the permeability dispersion in terms of sample size and ITZ characteristics. By sample theory, the size of representative volume element (RVE) for permeability is then quantified considering sample realization number and expected error. Concluding remarks are provided for the impact of ITZ on concrete permeability and its statistical characteristics.