DOI QR코드

DOI QR Code

Effect of Trehalose on Biological Membranes with Respect to Phase of the Membranes

  • Park, Jin-Won (Department of Chemical and Biomolecular Engineering, College of Energy and Biotechnology, Seoul National University of Science and Technology)
  • 투고 : 2017.03.17
  • 심사 : 2017.05.10
  • 발행 : 2017.06.30

초록

The effect of the trehalose incorporation on the biological membranes was investigated with respect to the phase of the membranes using the fluorescence intensity change. Spherical phospholipid bilayers, vesicles, were prepared only with the variation in the phase of each layer via a double emulsion technique. In the aqueous inside of the vesicles, 8-Aminonaphthalene-1,3,6-trisulfonic acid disodium salt(ANTS) was encapsulated. As a quencher, p-Xylene-bis(N-pyridinium bromide)(DPX) was included in the buffer where the vesicles were dispersed. The fluorescence scale was calibrated with the fluorescence of ANTS vesicles in p-Xylene-bis(N-pyridinium bromide)(DPX)-included-buffer taken as 100% fluorescence and the mixture of ANTS and DPX in the buffer as 0% fluorescence. Trehalose injection into the vesicle solution led the distortion of the membrane. It was found that the distortion was related to the phase of each layer the vesicle up on the ratio of trehalose to lipid. In the identical measurements at glucose, the behavior of the distortion was completely different from that of trehalose. These results seem to depend on the stability of the vesicles, due to the osmotic and volumetric effects on the headgroup packing disruption.

키워드

참고문헌

  1. Crowe, J. H. and L. M. Crowe (1992) Water and life, pp. 5-7. Springer, Berlin, Germany.
  2. Crowe, J. H., L. M. Crowe, and S. A. Jackson (1983) Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum. Arch. Biochem. Biophys. 220: 477-484. https://doi.org/10.1016/0003-9861(83)90438-1
  3. Crowe, L. M., J. H. Crowe, A. Rudolph, C. Womersley, and L. Appel (1985) Preservation of freeze- dries liposomes by trehalose. Arch. Biochem. Biophys. 242: 240-247. https://doi.org/10.1016/0003-9861(85)90498-9
  4. Leslie, S. B., S. A. Teter, L. M. Crowe, and J. H. Crowe (1994) Trehalose lowers membrane phase transitions in dry yeast cells. Biochim. Biophys. Acta 1192: 7-13. https://doi.org/10.1016/0005-2736(94)90136-8
  5. Carpenter, J. F., L. M. Crowe, and J. H. Crowe (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochim. Biophys. Acta 923: 109-115. https://doi.org/10.1016/0304-4165(87)90133-4
  6. Lerbret, A., P. Bordat, F. Affouard, A. Hédoux, Y. Guinet, and M. Descamps (2007) How do trehalose, maltose, and sucrose influence some structural and dynamical properties of lysozyme? Insight from molecular dynamics simulations. J. Phys. Chem. B 111: 9410-9420. https://doi.org/10.1021/jp071946z
  7. Crowe, L. M. and J. H. Crowe (1995) Liposomes, New Systems and New Trends in Their Applications, pp. 89-110. Editions de Sante, Paris, France.
  8. Lambruschini, C., A. Relini, A. Ridi, L. Cordone, and A. Gliozzi (2000) Trehalose interacts with phospholipid polar heads in Langmuir monolayers. Langmuir 16: 5467-5470. https://doi.org/10.1021/la991641e
  9. Wilschut, J., and D. Papahadjopoulos (1979) $Ca^{2+}$-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents. Nature 281: 690-692. https://doi.org/10.1038/281690a0
  10. Ellens, H., J. Bentz, and F. C. Szoka (1984) pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry 27: 1532-1538.
  11. Bentz, J., N. Duzgunes, and S. Nir (1985) Temperature dependence of divalent cation induced fusion of phosphatidylserine liposomes: Evaluation of the kinetic rate constants. Biochemistry 24: 1064-1072. https://doi.org/10.1021/bi00325a039
  12. Wolkers, W. F., N. J. Walker, Y. Tamari, F. Tablin, and J. H. Crowe (2003) Towards a clinical application of freeze-dried human platelets. Cell Preservation Technology 1: 175-188.
  13. Karger, S. (1992) Biological Product Freeze-Drying and Formulation. pp. 156-169. In: J. C. May and F. Brown (eds), Developments in Biological Standardization, Vol. 74, Publishers, Basel, Switzerland.
  14. Crowe, J. H., M. A. Whittam, D. Chapman, and L. M. Crowe (1984) Interactions of phospholipid monolayers with carbohydrates. Biochim. Biophys. Acta 769: 151-159. https://doi.org/10.1016/0005-2736(84)90018-X
  15. Diaz, S., F. Lairion, J. Arroyo, A. C. Biondi de Lopez, and E. A. Disalvo (2001) Contribution of phosphate groups to the dipole potential of dimyristoylphosphatidycholine membranes. Langmuir 17: 852-855. https://doi.org/10.1021/la000683w
  16. Luzardo M del, C., F. Amalfa, A. M. Nunez, S. Diaz, A. C. Biondi de Lopez, and E. A. Disalvo (2000) Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys. J. 78: 2452-2458. https://doi.org/10.1016/S0006-3495(00)76789-0
  17. Nagle, J. F. (1986) Theory of lipid monolayer and bilayer chainmelting phase transitions. Faraday Discuss. Chem. Soc. 81: 151-162. https://doi.org/10.1039/dc9868100151
  18. Nagle, J. F., and S. Tristram-Nagle (2000) Structure of lipid bilayers. Biochim. Biphys. Acta 1469: 159-195. https://doi.org/10.1016/S0304-4157(00)00016-2
  19. New, R. R. C. (1990) Liposomes: a practical approach, pp. 20-41, Academic Press, New York, USA.
  20. Lide, D. R. (2005) CRC handbook of chemistry and physics: A ready-reference book of chemical and physical data, 85th ed., p. 220, CRC Press, Boca Raton, USA.
  21. Park, J.-W. and D. J. Ahn (2008) Temperature effect on nanometer-scale physical properties of mixed phospholipid monolayers. Colloids Surf. B: Biointerfaces 62:157-161. https://doi.org/10.1016/j.colsurfb.2007.09.020
  22. Westh, P. (2008) Glucose, sucrose and trehalose are partially excluded from the interface of hydrated DMPC bilayers. Phys. Chem. Chem. Phys. 10: 4110-4112. https://doi.org/10.1039/b806274a
  23. Lennea., T., C. J. Garveyb, K. L. Kosterc, and G. Bryant (2010) Kinetics of the lamellar gel-fluid transition in phosphatidylcholine membranes in the presence of sugars. Chem. Phys. Lipids 163: 236-242. https://doi.org/10.1016/j.chemphyslip.2009.12.001
  24. Hur, J., and J.-W. Park (2015) Trehalose-induced variation in mechanical properties of vesicles in aqueous solution. J. Membrane Biol. 248: 1121-1125. https://doi.org/10.1007/s00232-015-9827-4
  25. Kapla, J., J. Wohlert, B. Stevensson, O. Engstrom, G. Widmalm, A. Maliniak (2013) Molecular dynamics simulations of membrane-sugar interactions. J. Phys. Chem. B 117: 6667-6673. https://doi.org/10.1021/jp402385d
  26. Kent, B., T. Hunt, T. A. Darwich, T. HauB, C. J. Garvey, and G. Bryant (2014) Localization of trehalose in partially hydrated DOPC bilayers: insights into cryoprotective mechanisms. J. R. Soc. Interface 11: 20140069.
  27. Bruning, B.-A., S. Prevost, R. Stehle, R. Steitz, P. Falus, B. Farago, and T. Hellweg (2014) Bilayer undulation dynamics in unilamellar phospholipid vesicles: Effect of temperature, cholesterol and trehalose. Biochim. et Biophys. Acta 1838: 2412-2419. https://doi.org/10.1016/j.bbamem.2014.06.006
  28. Park, J.-W. (2010) First-leaflet phase effect on properties of phospholipid bilayer formed through vesicle adsorption on LB monolayer. J. Membr. Biol. 237:107-114. https://doi.org/10.1007/s00232-010-9311-0
  29. Nakata, S., T. Shiota, N. Kumazawa, and M. Denda (2012) Interaction between a monosaccharide and a phospholipid molecular layer. Colloids Surf. B: Physicochem. Eng. Aspects 405: 14-18. https://doi.org/10.1016/j.colsurfa.2012.04.021
  30. Park, J.-W. (2014) Composition effect of the outer layer on the vesicle fusion catalyzed by Phospholipase D. Bull. Korean Chem. Soc. 35: 3509-3513. https://doi.org/10.5012/bkcs.2014.35.12.3509
  31. Pereira, C. and P. H. Hünenberger (2006) Interaction of the Sugars Trehalose, Maltose and Glucose with a Phospholipid Bilayer: A Comparative Molecular Dynamics Study. J. Phys. Chem. B 110: 15572-15581. https://doi.org/10.1021/jp060789l