DOI QR코드

DOI QR Code

Three-Dimensional Optical Encryption of Quick Response Code

  • Kim, Youngjun (Department of Electrical, Electronic, and Control Engineering, IITC, Hankyong National University) ;
  • Yun, Hui (Department of Electrical, Electronic, and Control Engineering, IITC, Hankyong National University) ;
  • Cho, Myungjin (Department of Electrical, Electronic, and Control Engineering, IITC, Hankyong National University)
  • Received : 2018.05.16
  • Accepted : 2018.06.11
  • Published : 2018.09.30

Abstract

In this paper, we present a three-dimensional (3D) optical encryption technique for quick response (QR) code using computational synthesized integral imaging, computational volumetric reconstruction, and double random phase encryption. Two-dimensional (2D) QR code has many advantages, such as enormous storage capacity and high reading speed. However, it does not protect primary information. Therefore, we present 3D optical encryption of QR code using double random phase encryption (DRPE) and an integral imaging technique for security enhancement. We divide 2D QR code into four parts with different depths. Then, 2D elemental images for each part of 2D QR code are generated by computer synthesized integral imaging. Generated 2D elemental images are encrypted using DRPE, and our method increases the level of security. To validate our method, we report simulations of 3D optical encryption of QR code. In addition, we calculated the peak side-lobe ratio (PSR) for performance evaluation.

Keywords

References

  1. QR Code Features [Internet], Available: https://web.archive.org/web/20130129064920/http://www.qrcode.com/en/qrfeature.html.
  2. G. Lippmann, "La photographie intégrale," Comptes rendus de l'Académie des Sciences, vol. 146, no. 9, pp. 446-451, 1908.
  3. S. H. Hong, J. S. Jang, and B. Javidi, "Three-dimensional volumetric object reconstruction using computational integral imaging," Optics Express, vol. 12, no. 3, pp. 483-491, 2004. DOI: 10.1364/OPEX.12.000483.
  4. J. S. Jang and B. Javidi, "Three-dimensional synthetic aperture integral imaging," Optics Letters, vol. 27, no. 13, pp. 1144-1146, 2002. DOI: 10.1364/OL.27.001144.
  5. J. S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Optics Letters, vol. 27, no. 5, pp. 324-326, 2002. DOI: 10.1364/OL.27.000324.
  6. M. Cho and B. Javidi, "Computational reconstruction of three-dimensional integral imaging by rearrangement of elemental image pixels," Journal of Display Technology, vol. 5, no. 2, pp. 61-65, 2009. DOI: 10.1109/jdt.2008.2004857.
  7. F. Okano, J. Arai, K. Mitani, and M. Okui, "Real-time integral imaging based on extremely high resolution video system," Proceedings of the IEEE, vol. 94, no. 3, pp. 490-501, 2006. DOI: 10.1109/JPROC.2006.870687.
  8. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, "Gradient index lens-array method based on real-time integral photography for three-dimensional images," Applied Optics, vol. 37, no.11, pp. 2034-2045, 1998. DOI: 10.1364/AO.37.002034.
  9. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, "Analysis of resolution limitation of integral photography," Journal of the Optical Society of America A, vol. 15, no. 8, pp. 2059-2065, 1998. DOI: 10.1364/JOSAA.15.002059.
  10. M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, "Three-dimensional optical sensing and visualization using integral imaging," Proceedings of the IEEE, vol. 99, no. 4, pp. 556-575, 2011. DOI: 10.1109/JPROC.2010.2090114.
  11. M. Cho and D. Shin, "3D integral imaging display using axially recorded multiple images," Journal of the Optical Society of Korea, vol. 17, no. 5, pp. 410-414, 2013. DOI: 10.3807/josk.2013.17.5.410.
  12. P. Refregier and B. Javidi, "Optical image encryption based on input plane and Fourier plane random encoding," Optics Letters, vol. 20, no. 7, pp. 767-769, 1995. DOI: 10.1364/OL.20.000767.
  13. O. Matoba and B. Javidi, "Encrypted optical memory system using three-dimensional keys in the Fresnel domain," Optics Letters, vol. 24, no. 11, pp. 762-764, 1999. DOI: 10.1364/OL.24.000762.
  14. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, and K. Kuroda, "Secure optical memory system with polarization encryption," Applied Optics, vol. 40, no. 14, pp. 2310-2315, 2001. DOI: 10.1364/AO.40.002310.
  15. B. Javidi and T. Nomura, "Securing information by use of digital holography," Optics Letters, vol. 25, no. 1, pp. 28-30, 2000. DOI: 10.1364/OL.25.000028.
  16. F. Goudail, F. Bollaro, B. Javidi, and P. Refregier, "Influence of a perturbation in a double phase-encoding system," Journal of the Optical Society of America A, vol. 15, no. 10, pp. 2629-2638, 1998. DOI: 10.1364/JOSAA.15.002629.
  17. O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, "Optical techniques for information security," Proceedings of the IEEE, vol. 97, no. 6, pp. 1128-1148, 2009. DOI: 10.1109/JPROC.2009.2018367.
  18. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, "Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys," Optics Letters, vol. 30, no. 13, pp. 1644-1646, 2005. DOI: 10.1364/OL.30.001644.
  19. E. Perez-Cabre, M. J. Cho, and B. Javidi, "Information authentication using photon-counting double-random-phase encrypted images," Optics Letters, vol. 36, no. 1, pp. 22-24, 2011. DOI: 10.1364/OL.36.000022.
  20. Y. Kim, K. O. Cho, J. Han, and M. Cho, "Three-dimensional QR code using integral imaging," Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 12, pp. 2363-2369, 2016. DOI: 10.6109/jkiice.2016.20.12.2363.
  21. M. Cho, A. Mahalanobis, and B. Javidi, "3D passive photon counting automatic target recognition using advanced correlation filters," Optics Letters, vol. 36, no. 6, pp. 861-863, 2011. DOI: 10.1364/OL.36.000861.