• Title/Summary/Keyword: Volume Efficiency

Search Result 2,130, Processing Time 0.032 seconds

Research on the Trend of Establishment and Utilization of Overseas Forest Geospatial Information for Scientific Forest Resource Management (과학적인 산림자원관리를 위한 해외 산림공간정보 구축 및 활용 동향 조사)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.377-382
    • /
    • 2021
  • In order to advance forest resource management, it is necessary to solve problems such as the aging of forest-related industry workers and the field investigation system centered on manpower. Therefore, in this study, the trend of establishment and utilization of overseas forest geospatial information applied with the latest technology for scientific forest resource management was investigated to identify the domestic application plan. Overseas, photogrammetry and LiDAR technologies were being used to construct and utilize forest geospatial information. In the case of photogrammetry, it was used to measure the volume of vegetation, diameter, and tree height. And LiDAR technology has been applied to the measurement of diameter, and tree height. Through the analysis of overseas cases, it was identified how to construct forest geospatial information using photogrammetry and LiDAR, and it was found that LiDAR showed higher accuracy than photogrammetry. In the future, if the construction of forest geospatial information using various LiDAR sensors are performed and the accuracy and work efficiency are analyzed, it will be possible to present the possibility of using new technologies in the construction of forest geospatial information in Korea.

Experimental Validation of High Damping Printed Circuit Board With a Multi-layered Superelastic Shape Memory Alloy Stiffener (적층형 초탄성 형상기억합금 보강재 기반 고댐핑 전자기판의 실험적 성능 검증)

  • Shin, Seok-Jin;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.661-669
    • /
    • 2021
  • A mechanical stiffener has been mainly applied on a PCB to secure fatigue life of a solder joint of an electronic components in spaceborne electronics by minimizing bending displacement of the PCB. However, it causes an increase of mass and volume of the electronics. The high damping PCB implemented by multi-layered viscoelastic tapes of a previous research was effective for assuring the fatigue life of the solder joint, but it also has a limitation to decrease accommodation efficiency for the components on the PCB. In this study, we proposed high damping PCB with a multi-layered superelastic shape memory alloy stiffener for spatialminimized, light-weighted, high-integrated structure design of the electronics. To investigate the basic characteristics of the proposed PCB, a static load test, a free vibration test were performed. Then, the high damping characteristic and the design effectiveness of the PCB were validated through a random vibration test.

An experimental study on the filtration test of cotton ball filters (코튼볼 여재의 여과 특성 실험 연구)

  • Kim, Sunghong;Kim, Heejun;Kim, Donghan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.79-86
    • /
    • 2019
  • In order to measure the filtration characteristics of a cotton ball shape filter, the experiments of suspended solids(SS) surrogate material selection and filtration performance have been carried out in this study. Between the two materials of powdered activated carbon(PAC) and powdered red-clay, PAC is more suitable surrogate material in terms of experimental criteria and particle size distribution in the non-point source pollutants removal system. As a result of the filtration experiments with the cotton ball shape filter, the initial headloss was about 8 cm, and the headloss slightly increased over filtration time. The Kozeny-Carman equation was used to analyze the changes of pressure and porosity during the filtration. The initial porosity was calculated as 0.945 and it decreased to 0.936 at the end of design filtration time. As the filtration continued, the SS concentration of the filtered water gradually increased and the SS removal rate gradually decreased. When the SS target removal efficiency is assumed to be 80%, the cumulative SS removal capacity is expected as $28.8kg/m^2$. This means the volume loading rate of the cotton ball shape filter can be $115m^3/m^2$ when the typical SS concentration of non-point source water pollution is assumed as 250 mg/L.

Implementation of Customer Behavior Evaluation System Using Real-time Web Log Stream Data (실시간 웹로그 스트림데이터를 이용한 고객행동평가시스템 구현)

  • Lee, Hanjoo;Park, Hongkyu;Lee, Wonsuk
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.1-11
    • /
    • 2018
  • Recently, the volume of online shopping market continues to be fast-growing, that is important to provide customized service based on customer behavior evaluation analysis. The existing systems only provide analysis data on the profiles and behaviors of the consumers, and there is a limit to the processing in real time due to disk based mining. There are problems of accuracy and system performance problems to apply existing systems to web services that require real-time processing and analysis. Therefore, The system proposed in this paper analyzes the web click log streams generated in real time to calculate the concentration level of specific products and finds interested customers which are likely to purchase the products, and provides and intensive promotions to interested customers. And we verify the efficiency and accuracy of the proposed system.

Performance Improvement of Distributed Consensus Algorithms for Blockchain through Suggestion and Analysis of Assessment Items (평가항목 제안 및 분석을 통한 블록체인 분산합의 알고리즘 성능 개선)

  • Kim, Do Gyun;Choi, Jin Young;Kim, Kiyoung;Oh, Jintae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.179-188
    • /
    • 2018
  • Recently, blockchain technology has been recognized as one of the most important issues for the 4th Industrial Revolution which can be represented by Artificial Intelligence and Internet of Things. Cryptocurrency, named Bitcoin, was the first successful implementation of blockchain, and it triggered the emergence of various cryptocurrencies. In addition, blockchain technology has been applied to various applications such as finance, healthcare, manufacturing, logistics as well as public services. Distributed consensus algorithm is an essential component in blockchain, and it enables all nodes belonging to blockchain network to make an agreement, which means all nodes have the same information. For example, Bitcoin uses a consensus algorithm called Proof-of-Work (PoW) that gives possession of block generation based on the computational volume committed by nodes. However, energy consumption for block generation in PoW has drastically increased due to the growth of computational performance to prove the possession of block. Although many other distributed consensus algorithms including Proof-of-Stake are suggested, they have their own advantages and limitations, and new research works should be proposed to overcome these limitations. For doing this, above all things, we need to establish an evaluation method existing distributed consensus algorithms. Based on this motivation, in this work, we suggest and analyze assessment items by classifying them as efficiency and safety perspectives for investigating existing distributed consensus algorithms. Furthermore, we suggest new assessment criteria and their implementation methods, which can be used for a baseline for improving performance of existing distributed consensus algorithms and designing new consensus algorithm in future.

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.

Critical review on Active Technologies to Regulate the Levels of Carbon Dioxide and Oxygen for Kimchi Packaging (김치포장 내부의 이산화탄소 및 산소 제어를 위한 포장 기술 고찰)

  • Jeong, Suyeon;Lee, Hyun-Gyu;Lee, Jung-Soo;Yoo, SeungRan
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.2
    • /
    • pp.233-239
    • /
    • 2019
  • This paper presents a literature review on the active technologies to regulate the levels of carbon dioxide and oxygen in Kimchi packaging. In this study, laser-etched pouches and $O_2$ scavengers were used for Kimchi packaging, and the efficiency of each packaging technique to regulate the $CO_2$ and $O_2$ levels inside Kimchi packages was investigated. When Kimchi was packaged with a laser-etched pouch, the $CO_2$ concentration in the sample with a high gas transmission rate was less than that in other pouches (p<0.05), and a low $CO_2$ level had little effect on the expansion of the package volume. Kimchi treated with an $O_2$ absorber exhibited a significantly lower (p<0.05) $O_2$ concentration inside the packages relative to the control. A low $O_2$ concentration inside the Kimchi package effectively inhibited the growth of total aerobic bacteria and lactic acid bacteria, as well as yeasts and molds on Kimchi. These results suggest that $O_2$ absorbers have a positive effect on the microbial quality of Kimchi. Therefore, packaging in a laser-etched pouch and the use of an $O_2$ scavenger could provide a novel packaging material for regulating the $CO_2$ and $O_2$ levels during Kimchi packaging.

Selection of Optimum Clearance Considering the Dynamic Behavior of a High-pressure Injector (고압 인젝터의 동적 거동을 고려한 최적 틈새 조합에 관한 연구)

  • Ryu, Daewon;Kim, Dongjun;Park, Sang-Shin;Ryu, Bongwoo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.172-178
    • /
    • 2021
  • An injector is a mechanical device present inside the engine. Its main function is to supply an appropriate volume of fuel into the combustion chamber, which is directly related to the overall engine efficiency of a car. During the operation of an injector, a magnetic force lifts the parts of the injector from closed position to open position which generates a horizontal force on the needle. The horizontal force acts on a different position from that of the center of mass of the needle. Therefore, this causes eccentricity in the needle and the generation of a tilting motion during the lifting operation which can result in wear. However, appropriate selection of clearances for these parts can prevent wear. In this study, lubrication analysis is conducted to determine the optimum clearance of parts with sliding motion inside the injector. The height functions are derived considering the dynamic behavior and relative velocity of the parts. Using the derived height function, the pressure profiles are calculated for the lubricated surfaces from the Reynolds' equation. Subsequently, the fluid reaction forces are calculated. The equations of motions are applied to the fluid reaction forces and external forces are solved to calculate the minimum film thickness between each part with variation in the clearances. Finally, the optimum clearances are determined. The effect of the clearances on the behavior of the moving parts is presented and discussed.

A Novel Way of Context-Oriented Data Stream Segmentation using Exon-Intron Theory (Exon-Intron이론을 활용한 상황중심 데이터 스트림 분할 방안)

  • Lee, Seung-Hun;Suh, Dong-Hyok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.799-806
    • /
    • 2021
  • In the IoT environment, event data from sensors is continuously reported over time. Event data obtained in this trend is accumulated indefinitely, so a method for efficient analysis and management of data is required. In this study, a data stream segmentation method was proposed to support the effective selection and utilization of event data from sensors that are continuously reported and received. An identifier for identifying the point at which to start the analysis process was selected. By introducing the role of these identifiers, it is possible to clarify what is being analyzed and to reduce data throughput. The identifier for stream segmentation proposed in this study is a semantic-oriented data stream segmentation method based on the event occurrence of each stream. The existence of identifiers in stream processing can be said to be useful in terms of providing efficiency and reducing its costs in a large-volume continuous data inflow environment.

Paeoniflorin treatment regulates TLR4/NF-κB signaling, reduces cerebral oxidative stress and improves white matter integrity in neonatal hypoxic brain injury

  • Yang, Fan;Li, Ya;Sheng, Xun;Liu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.97-109
    • /
    • 2021
  • Neonatal hypoxia/ischemia (H/I), injures white matter, results in neuronal loss, disturbs myelin formation, and neural network development. Neuroinflammation and oxidative stress have been reported in neonatal hypoxic brain injuries. We investigated whether Paeoniflorin treatment reduced H/I-induced inflammation and oxidative stress and improved white matter integrity in a neonatal rodent model. Seven-day old Sprague-Dawley pups were exposed to H/I. Paeoniflorin (6.25, 12.5, or 25 mg/kg body weight) was administered every day via oral gavage from postpartum day 3 (P3) to P14, and an hour before induction of H/I. Pups were sacrificed 24 h (P8) and 72 h (P10) following H/I. Paeoniflorin reduced the apoptosis of neurons and attenuated cerebral infarct volume. Elevated expression of cleaved caspase-3 and Bad were regulated. Paeoniflorin decreased oxidative stress by lowering levels of malondialdehyde and reactive oxygen species generation and while, and it enhanced glutathione content. Microglial activation and the TLR4/NF-κB signaling were significantly down-regulated. The degree of inflammatory mediators (interleukin 1β and tumor necrosis factor-α) were reduced. Paeoniflorin markedly prevented white matter injury via improving expression of myelin binding protein and increasing O1-positive olidgodendrocyte and O4-positive oligodendrocyte counts. The present investigation demonstrates the potent protective efficiency of paeoniflorin supplementation against H/I-induced brain injury by effectually preventing neuronal loss, microglial activation, and white matter injury via reducing oxidative stress and inflammatory pathways.