DOI QR코드

DOI QR Code

Implementation of Customer Behavior Evaluation System Using Real-time Web Log Stream Data

실시간 웹로그 스트림데이터를 이용한 고객행동평가시스템 구현

  • 이한주 (연세대학교 컴퓨터공학과) ;
  • 박홍규 (동양미래대학교 컴퓨터소프트웨어공학과) ;
  • 이원석 (연세대학교 컴퓨터공학과)
  • Received : 2018.09.17
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

Recently, the volume of online shopping market continues to be fast-growing, that is important to provide customized service based on customer behavior evaluation analysis. The existing systems only provide analysis data on the profiles and behaviors of the consumers, and there is a limit to the processing in real time due to disk based mining. There are problems of accuracy and system performance problems to apply existing systems to web services that require real-time processing and analysis. Therefore, The system proposed in this paper analyzes the web click log streams generated in real time to calculate the concentration level of specific products and finds interested customers which are likely to purchase the products, and provides and intensive promotions to interested customers. And we verify the efficiency and accuracy of the proposed system.

최근 온라인 쇼핑 유통시장의 규모는 지속적이고 빠르게 성장하고 있기 때문에 고객 행동평가분석을 통한 맞춤형 쇼핑서비스가 매우 중요해지고 있다. 하지만 기존의 분석 방식은 소비자의 프로파일 및 행동에 대한 분석 데이터만을 제공하고, 디스크기반 마이닝 탐사로 인해 실시간 분석의 한계가 존재했다. 그러므로 실시간 처리 및 분석이 필요한 웹 서비스와 같은 분야에 기존 방식을 적용하기에는 정확성의 문제와 시스템 성능 문제가 존재한다. 본 연구에서는 실시간으로 발생되는 웹 클릭 로그 스트림을 분석하고 특정 상품에 대한 집중도를 분석하여 상품 구매 의지가 있는 관심고객을 찾아내며, 이를 바탕으로 전체 고객 대상이 아닌 관심고객 중심의 상품 프로모션을 진행할 수 있는 시스템을 구현하고 이들의 효율성과 정확성을 검증한다.

Keywords

Acknowledgement

Grant : 빅데이터 환경에서 비식별화 기법을 이용한 개인정보보호 기술 개발

Supported by : 한국연구재단, 정보통신기술진흥센터

References

  1. UNWTO World Tourism Barometer Vol. 15, http://www.travelbizmonitor.com/ [accessed: Jan. 05, 2017]
  2. G. C. Lee, S. J. Kwon, and J. K. Kim, "Analysis of User's Purchasing Pattern on the Web Shopping Mall by Using Web Log Analysis and Fuzzy Cognitive Map Approach", Korea Society of Business Administration Vol. 32, No. 2, pp 567-595, Apr. 2003.
  3. D. H. Lee, S. M. Kim, J. H. Oh, D. R. Seo, and K. G. Im, "User behavior analysis in e-shopping mall with web log mining", Korea Intelligent information system, pp. 305-312, Nov. 2004.
  4. G. Zhu, J. Cao, C. Li, and Z. Wu, "A recommendation engine for travel products based on topic sequential patterns", Multimedia Tools and Applications, Vol. 76, No. 16, pp. 17595-17612, Aug. 2017. https://doi.org/10.1007/s11042-017-4406-6
  5. O. Besbes, Y. Gur, and A. Zeevi, "Optimization in Online Content Recommendation Services: Beyond Click-Through Rates", Manufacturing & Service Operations Management, Vol. 18, No. 1, pp. 15-33, Sep. 2015.
  6. J. H. Oh, J. H. Kim, and J. W. Kim, "A Study on the Development of Realtime Online Marketing System Using Web Log Analytics", Society for e-Business Studies, Vol. 16, No. 3, pp. 249-261, Aug. 2011. https://doi.org/10.7838/jsebs.2011.16.3.249
  7. D. Poel and W. Buckinx, "Predicting online purchasing behaviour", European Journal of Operational Research, Vol. 166, No. 2, pp. 557-575, Oct. 2005. https://doi.org/10.1016/j.ejor.2004.04.022
  8. A. K. Kau, Y. E. Tang, and S. Ghose, "Typology of online shoppers", Journal of Consumer Marketing, Vol. 20, No. 2, pp. 139-156, 2003. https://doi.org/10.1108/07363760310464604
  9. Y. Zhang and M. Pennacchiotti, "Recommending branded products from social media", Proceedings of the 7th ACM conference on Recommender systems, 2013 Article, pp. 77-84, Oct. 2013.
  10. Y. Zhang and M. Pennacchiotti, "Predicting purchase behaviors from social media", WWW '13 Proceedings of the 22nd international conference on World Wide Web, pp. 1521-1532, May 2013.
  11. X. Wu and A. Bolivar, "Predicting the conversion probability for items on C2C ecommerce sites", CIKM '09 Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1377-1386, Nov. 2009.
  12. E. Manohar and D. S. Punithavathani, "Hybrid Data Aggregation Technique to Categorize the Web Users to Discover Knowledge About the Web Users", Wireless Personal Communiacations, Vol. 97, No. 4, pp. 5289-5303, Aug. 2017. https://doi.org/10.1007/s11277-017-4779-x
  13. R. Orit, G. Anat, and F. Lior, "Analyzing online consumer behavior in mobile and PC devices: A novel web usage mining approach", Electronic commerce research and applications, Vol. 26, pp 1-12, Sep. 2017. https://doi.org/10.1016/j.elerap.2017.09.003
  14. Google Analytics, https://analytics.google.com [accessed: Feb. 15, 2018]
  15. S. P. Mary and E. Baburaj, "A novel framework for an efficient online recommendation system using constraint based web usage mining techniques", Biomedical Research 2016; Special Issue: S92-S98. Jan. 2016
  16. A. G. Closea and M. Kukar-Kinney, "Beyond buying: Motivations behind consumers' online shopping cart use", Journal of Business Research, Vol. 63, No. 9-10, pp. 986-992, Sep. 2009. https://doi.org/10.1016/j.jbusres.2009.01.022

Cited by

  1. 인터넷 게임 방송 매체의 스토리형 게임 저작권 문제 조정 사례 연구 vol.20, pp.1, 2020, https://doi.org/10.7236/jiibc.2020.20.1.61
  2. Customer Churn Prediction using App Log Data of a Coalition Loyalty Program vol.19, pp.8, 2021, https://doi.org/10.14801/jkiit.2021.19.8.107