Abstract
In the IoT environment, event data from sensors is continuously reported over time. Event data obtained in this trend is accumulated indefinitely, so a method for efficient analysis and management of data is required. In this study, a data stream segmentation method was proposed to support the effective selection and utilization of event data from sensors that are continuously reported and received. An identifier for identifying the point at which to start the analysis process was selected. By introducing the role of these identifiers, it is possible to clarify what is being analyzed and to reduce data throughput. The identifier for stream segmentation proposed in this study is a semantic-oriented data stream segmentation method based on the event occurrence of each stream. The existence of identifiers in stream processing can be said to be useful in terms of providing efficiency and reducing its costs in a large-volume continuous data inflow environment.
사물인터넷 환경에서는 센서로부터의 이벤트 데이터가 시간의 흐름에 따라 지속적으로 보고된다. 이러한 추세로 입수되는 이벤트 데이터는 무한정 쌓이게 되므로 데이터의 효율적인 분석과 관리를 위한 방안이 필요하다. 본 연구에서는 지속적으로 보고되어 유입되는 센서로부터의 이벤트 데이터에 대하여 효과적인 선택과 활용을 뒷받침 할 수 있도록 하는 데이터 스트림 분할 방안을 제안하였다. 분석 처리를 시작할 지점을 식별하기 위한 식별자를 선정하도록 하였다. 이러한 식별자의 역할을 존치시킴으로써 분석할 대상을 명확하게 할 수 있으며 데이터 처리량을 감소시킬 수 있다. 본 연구에서 제안하는 스트림 분할을 위한 식별자는 각 스트림의 이벤트 발생을 기준으로 하기에 의미 중심의 데이터 스트림 분할 방안이라고 할 수 있다. 스트림 처리에서의 식별자의 존재는 대용량의 지속적인 데이터 유입환경에서 효율성을 제공하고 비용을 저감하는 측면에서 유용하다고 할 수 있다.