• Title/Summary/Keyword: Volterra integro-differential equations

Search Result 21, Processing Time 0.028 seconds

NUMERICAL STUDY OF THE SERIES SOLUTION METHOD TO ANALYSIS OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

  • ASIYA ANSARI;NAJMUDDIN AHMAD;ALI HASAN ALI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.899-913
    • /
    • 2024
  • In this article, the Series Solution Method (SSM) is employed to solve the linear or non-linear Volterra integro-differential equations. Numerous examples have been presented to explain the numerical results, which is the comparison between the exact solution and the numerical solution, and it is found through the tables. The amount of error between the exact solution and the numerical solution is very small and almost nonexistent, and it is also illustrated through the graph how the exact solution completely applies to the numerical solution. This proves the accuracy of the method, which is the Series Solution Method (SSM) for solving the linear or non-linear Volterra integro-differential equations using Mathematica. Furthermore, this approach yields numerical results with remarkable accuracy, speed, and ease of use.

A MATRIX FORMULATION OF THE TAU METHOD FOR FREDHOLM AND VOLTERRA LINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Aliabadi, M.-Hosseini;Shahmorad, S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.667-677
    • /
    • 2002
  • In this paper we obtain the matrix Tau Method representation of a general boundary value problem for Fredholm and Volterra integro-differential equations of order $\nu$. Some theoretical results are given that simplify the application of the Tau Method. The application of the Tau Method to the numerical solution of such problems is shown. Numerical results and details of the algorithm confirm the high accuracy and user-friendly structure of this numerical approach.

THE COMBINED MODIFIED LAPLACE WITH ADOMIAN DECOMPOSITION METHOD FOR SOLVING THE NONLINEAR VOLTERRA-FREDHOLM INTEGRO DIFFERENTIAL EQUATIONS

  • HAMOUD, AHMED A.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • A combined form of the modified Laplace Adomian decomposition method (LADM) is developed for the analytic treatment of the nonlinear Volterra-Fredholm integro differential equations. This method is effectively used to handle nonlinear integro differential equations of the first and the second kind. Finally, some examples will be examined to support the proposed analysis.

h-STABILITY IN CERTAIN INTEGRO-DIFFERENTIAL EQUATIONS

  • Goo, Yoon Hoe;Ji, Myeong Hee;Ry, Dae Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2009
  • In this paper, we investigate h-stability for the nonlinear Volterra integro-differential equations and the functional integro-differential equations.

  • PDF

NUMERICAL SOLUTION OF A CLASS OF THE NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

  • Saeedi, L.;Tari, A.;Masuleh, S.H. Momeni
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.65-77
    • /
    • 2013
  • In this paper, we develop the operational Tau method for solving nonlinear Volterra integro-differential equations of the second kind. The existence and uniqueness of the problem is provided. Here, we show that the nonlinear system resulted from the operational Tau method has a semi triangular form, so it can be solved easily by the forward substitution method. Finally, the accuracy of the method is verified by presenting some numerical computations.

THE RELIABLE MODIFIED OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING INTEGRO-DIFFERENTIAL EQUATIONS

  • Hamoud, Ahmed A.;Ghadle, Kirtiwant P.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.409-420
    • /
    • 2019
  • In this article, we discussed semi-analytical approximated methods for solving mixed Volterra-Fredholm integro-differential equations, namely: Adomian decomposition method and modified Adomian decomposition method. Moreover, we prove the uniqueness results and convergence of the techniques. Finally, an example is included to demonstrate the validity and applicability of the proposed techniques.

DECOMPOSITION METHOD FOR SOLVING NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • KAMEL AL-KHALED;ALLAN FATHI
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.415-425
    • /
    • 2005
  • This paper outlines a reliable strategy for solving nonlinear Volterra-Fredholm integro-differential equations. The modified form of Adomian decomposition method is found to be fast and accurate. Numerical examples are presented to illustrate the accuracy of the method.

NUMERICAL SOLUTION OF A GENERAL CAUCHY PROBLEM

  • El-Namoury, A.R.M.
    • Kyungpook Mathematical Journal
    • /
    • v.28 no.2
    • /
    • pp.177-183
    • /
    • 1988
  • In this work, two numerical schemes arc proposed for solving a general form of Cauchy problem. Here, the problem, to be defined, consists of a system of Volterra integro-differential equations. Picard's and Seiddl'a methods of successive approximations are ued to obtain the approximate solution. The convergence of these approximations is established and the rate of convergence is estimated in every case.

  • PDF

AN INVESTIGATION ON THE EXISTENCE AND UNIQUENESS ANALYSIS OF THE FRACTIONAL NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.237-249
    • /
    • 2023
  • In this paper, by means of the Schauder fixed point theorem and Arzela-Ascoli theorem, the existence and uniqueness of solutions for a class of not instantaneous impulsive problems of nonlinear fractional functional Volterra-Fredholm integro-differential equations are investigated. An example is given to illustrate the main results.

ON IMPULSIVE SYMMETRIC Ψ-CAPUTO FRACTIONAL VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.851-863
    • /
    • 2023
  • We study the appropriate conditions for the findings of uniqueness and existence for a group of boundary value problems for impulsive Ψ-Caputo fractional nonlinear Volterra-Fredholm integro-differential equations (V-FIDEs) with symmetric boundary non-instantaneous conditions in this paper. The findings are based on the fixed point theorem of Krasnoselskii and the Banach contraction principle. Finally, the application is provided to validate our primary findings.