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ABSTRACT. A combined form of the modified Laplace Adomian decomposition method (LADM)
is developed for the analytic treatment of the nonlinear Volterra-Fredholm integro differential
equations. This method is effectively used to handle nonlinear integro differential equations of
the first and the second kind. Finally, some examples will be examined to support the proposed
analysis.

1. INTRODUCTION

The topic of Volterra-Fredholm integro differential equations which have attracted grow-
ing interest in recent years, the nonlinear Volterra-Fredholm integro differential equations as
follows [1]:

y(j)(x) = f(x) +

∫ x

a
K1(x, t)G1(y(t))dt+

∫ b

a
K2(x, t)G2(y(t))dt (1.1)

with initial conditions
y(r)(a) = br, r = 1, 2, 3, ..., j − 1 (1.2)

where y(j)(x) is the jth derivative of the unknown function y(x) that will be determined,
Ki(x, t), i = 1, 2, be the kernels of the integro differential equation, f(x) is an analytic func-
tion, G1(y) and G2(y) are nonlinear functions of y. This paper deals with one of the most
applied problems in the engineering sciences. It is concerned with the integro differential
equations where both differential and integral operators will appear in the same equation. This
type of equations was introduced by Volterra for the first time in early 1900. Volterra investi-
gated the population growth, focussing his study on the hereditary influences, where through
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his research work the topic of integro differential equations was established [1,2]. More details
about the sources where these equations arise can be found in physics, biology, and engineer-
ing applications as well as in advanced integral equations Some works based on an iterative
scheme have been focusing on the development of more advanced and efficient methods for
integral equations and integro differential equations such as the variational iteration method
(VIM) which is a simple and Adomian decomposition method (ADM) [1–4], and the modified
decomposition method (MDM) for solving Volterra-Fredholm integral and integro differential
equations which is a simple and powerful method for solving a wide class of nonlinear prob-
lems [1, 5]. A variety of powerful methods has been presented, such as the homotopy analysis
method [1], homotopy perturbation method [6], the triangular-function method [7], variational
iteration method [1,3,8,9] and the Adomian decomposition method [1,10,11], and many meth-
ods for solving integro differential equations [10, 12–16]. By using the LADM we obtain ana-
lytical solutions for the integro-differential equations. Some fundamental works on various as-
pects of modifications of the Adomian’s decomposition method are given by Araghi [10]. The
modified form of Laplace decomposition method has been introduced by Manafianheris [17]
. Babolian et. al, [18], applied the new direct method to solve nonlinear Volterra-Fredholm
integral and integro differential equation using operational matrix with block-pulse functions.
The Laplace transform method with the Adomian decomposition method to establish exact so-
lutions or approximations of the nonlinear Volterra integro differential equations, Wazwaz [4]
. Elgasery [19], applied the Laplace decomposition method for the solution of Falkner Skan
equation. Hussain and Khan in [14], the modified Laplace decomposition method have applied
for solving some PDEs. Recently, the authors have used several methods for the numerical or
the analytical solution of linear and nonlinear Fredholm and Volterra integral and integro dif-
ferential equations of the second kind [1,2]. This numerical technique basically illustrates how
the Laplace transform may be used to approximate the solutions of the nonlinear integro differ-
ential equations by manipulating the decomposition method. Our aim in this paper is to obtain
the analytical solutions by using the modified Laplace Adomian decomposition method. The
remainder of the paper is organized as follows: In Section 2, a brief discussion for the modified
Laplace Adomian decomposition method is presented. In Section 3, We present and describe
the basic formulation of the Leibnitz rule for differentiation of integrals. In Section 4, a brief
discussion of convert nonlinear Volterra-Fredholm integro differential equations (VFIDs)of the
first kind to nonlinear Volterra-Fredholm integro differential equations (VFIDs) of the second
kind. In Section 5, applications of this method and the exact solutions for some examples are
obtained. Finally, we will give report on our paper and a brief conclusion is given in Section 6.

2. THE MODIFIED LAPLACE ADOMIAN DECOMPOSITION METHOD

The nonlinear Volterra-Fredholm integro differential equation with difference kernels as fol-
lows:

y(j)(x) = f(x) +

∫ x

a
K1(x− t)G1(y(t))dt+

∫ b

a
K2(x− t)G2(y(t))dt (2.1)
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To solve the nonlinear Volterra-Fredholm integro differential Eq. (2.1) by using the Laplace
transform method, we recall that the Laplace transforms of the derivatives of y(x) are defined
by

£{y(j)(x)} = sj£{y(x)} − sj−1y(0)− sj−2y′(0)− · · · − y(j−1)(0), (2.2)

Applying the Laplace transform to both sides of Eq. (2.1) gives:

sj£{y(x)} − sj−1y(0)− sj−2y′(0)− · · · − y(j−1)(0) = £{f(x)}
+£{K1(x− t)}£{G1(y(t))}+£{K2(x− t)}£{G2(y(t))} (2.3)

This can be reduced to

£{y(x)} =
1

s
y(0) +

1

s2
y′(0) + · · ·+ 1

si
y(j−1)(0) +

1

si
£{f(x)}+ 1

si
£{K1(x− t)}

£{G1(y(t))}+
1

si
£{K2(x− t)}£{G2(y(t))} (2.4)

The Adomian decomposition method and the Adomian polynomials can be used to handle Eq.
(2.4) and to address the nonlinear term G(y(x)). We first represent the linear term y(x) at the
left side by an infinite series of components given by

y =
∞∑

m=0

ym(x) (2.5)

where the components ym(x),m ≥ 0 will be determined recursively. However, the nonlinear
terms G1(y(x)) and G2(y(x)) at the right side of Eq. (2.4) will be represented by an infinite
series of the Adomian polynomials Am and Bm in the form:

G1(y(x)) =

∞∑
m=0

Am(x), G2(y(x)) =

∞∑
m=0

Bm(x) (2.6)

where Am and Bm, m ≥ 0 are defined by

Am =
1

m!

[
dm

dλm

[
G1

(
m∑
i=0

λiyi

)]]
λ=0

(2.7)

Bm =
1

m!

[
dm

dµm

[
G2

(
m∑
i=0

µiyi

)]]
µ=0

(2.8)

where the so-called Adomian polynomials Am can be evaluated for all forms of nonlinear-
ity. In other words, assuming that the nonlinear function is G1(y(x)) therefore the Adomian
polynomials are given by:

A0 = G1(y0),

A1 = y1G
′
1(y0),

A2 = y2G
′
1(y0) +

1

2!
y21G

′′
1(y0),
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A3 = y3G
′
1(y0) + y1y2G

′′
1(y0) +

1

3!
y31G

′′′
1 (y0),

A4 = y4G
′
1(y0) +

(
1

2!
y22 + y1y3

)
G′′

1(y0) +
1

2!
y21y2G

′′′
1 (y0) +

1

4!
y41G

(iv)
1 (y0), (2.9)

similarly, Adomian polynomials Bm can be evaluated for all forms of nonlinearity. In other
words, assuming that the nonlinear function is G2(y(x)), therefore the Adomian polynomials
are given by

B0 = G2(y0),

B1 = y1G
′
2(y0),

B2 = y2G
′
2(y0) +

1

2!
y21G

′′
2(y0),

B3 = y3G
′
2(y0) + y1y2G

′′
2(y0) +

1

3!
y31G

′′′
2 (y0),

B4 = y4G
′
2(y0) +

(
1

2!
y22 + y1y3

)
G′′

2(y0) +
1

2!
y21y2G

′′′
2 (y0) +

1

4!
y41G

(iv)
2 (y0),(2.10)

Substituting Eq. (2.5) and Eq. (2.6) into Eq. (2.4) leads to

£{
∞∑

m=0

ym(x)} =
1

s
y(0) +

1

s2
y′(0) + · · ·+ 1

si
y(m−1)(0) +

1

si
£{f(x)}+ 1

si
£{K1(x− t)}

£{
∞∑

m=0

Am(y(t))}+ 1

si
£{K2(x− t)}£{

∞∑
m=0

Bm(y(t))} (2.11)

The Adomian decomposition method presents the recursive relation

£{y0(x)} =
1

s
y(0) +

1

s2
y′(0) + · · ·+ 1

si
y(m−1)(0) +

1

si
£{f(x)},

£{yk+1(x)} =
1

si
(£{K1(x− t)}£{Ak(y(t))}+£{K2(x− t)}£{Bk(y(t))}) . (2.12)

Applying the inverse Laplace transform to the first part of Eq. (2.12) with k ≥ 0 gives y0(x),
that will define A0(x) and B0(x). Using A0(x) and B0(x) will enable us to evaluate y1(x).
The determination of y0(x) and y1(x) leads to the determination of A1(x) and B1(x) that will
allows us to determine y2(x), and so on. This in turn will lead to the complete determination of
the components of yk(x), k ≥ 0 upon using the second part of Eq. (2.12). The series solution
follows immediately after using Eq. (2.5). The obtained series solution may converge to an
exact solution if such a solution exists. Otherwise, the series solution can be used for numer-
ical purposes. The combined modified Laplace Adomian decomposition method for solving
nonlinear Volterra-Fredholm integro differential equations of the second kind is illustrated by
studying the following examples in Section 5.
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3. LEIBNITZ RULE FOR DIFFERENTIATION OF INTEGRALS

One of the methods that will be used to solve integral equations is the conversion of the
integral equation to an equivalent differential equation. The conversion is achieved by using
the well-known Leibnitz rule for differentiation of integrals [1]. Let f(x, t) be continuous and
∂f
∂t be continuous in a domain of the (x− t) plane that includes the rectangle a ≤ x ≤ b, t0 ≤
t ≤ t1, and let

F (x) =

∫ h(x)

g(x)
f(x, t)dt, (3.1)

then differentiation of the integral in Eq. (3.1) exists and is given by

F ′(x) =
dF

dx

= f(x, h(x))
dh(x)

dx
− f(x, g(x))

dg(x)

dx
+

∫ h(x)

g(x)

∂

∂x
f(x, t)dt. (3.2)

If g(x) = a and h(x) = b where a and b are constants, then the Leibnitz rule Eq. (3.2) reduces
to

F ′(x) =

∫ b

a

∂

∂x
f(x, t)dt. (3.3)

4. CONVERSION VFIDE FIRST KIND TO VFIDE OF THE SECOND KIND

In this section, we will present a method that will convert nonlinear Volterra-Fredholm in-
tegro differential equations (VFIDE) of the first kind to nonlinear Volterra-Fredholm integro
differential equations (VFIDE) of the second kind. The conversion technique works effectively
only if K2(x, x) ̸= 0 and L2(x, x) ̸= 0. The VFIDE of the first kind as:

f(x) =

∫ x

a
K1(x, t)G1(y(t))dt+

∫ x

a
K2(x, t)y

(i)(t)dt+

∫ b

a
L1(x, t)G2(y(t))dt

+

∫ b

a
L2(x, t)y

(i)(t)dt. (4.1)

We will study the case of the second order derivatives (i = 2). Integrating the second and
fourth integrals by parts and using Leibnitz rule Eq. (3.2), we find

f(x) =

∫ x

a
K1(x, t)G1(y(t))dt+K2(x, x)y

′(x)−K2(x, a)y
′(a)−

∫ x

a

∂

∂t
K2(x, t)y

′(t)dt

+

∫ b

a
L1(x, t)G2(y(t))dt−

∫ b

a

∂

∂t
L2(x, t)y

′(t)dt, (4.2)

or equivalently

y′(t) =
f(x)

K2(x, x)
+

K2(x, a)

K2(x, x)
y′(a)− 1

K2(x, x)

∫ x

a
K1(x, t)G1(y(t))dt
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+
1

K2(x, x)

∫ x

a

∂

∂t
K2(x, t)y

′(t)dt− 1

K2(x, x)

∫ b

a
L1(x, t)G2(y(t))dt

+
1

K2(x, x)

∫ b

a

∂

∂t
L2(x, t)y

′(t)dt,

It is important to notice that if the nonlinear Volterra-Fredholm integro differential equations
of the first kind contains the second derivative of y(x), then the conversion process will give a
nonlinear Volterra-Fredholm integro differential equations of the second kind. Other methods
can be used as well.

5. EXAMPLES

In order to elucidate the solution procedure of the modified Laplace Adomian decomposition
method for solving the nonlinear Volterra-Fredholm integro differential equations is illustrated
in the three examples in this section which shows the effectiveness and generalization of our
proposed method given above.

Example 5.1. Consider the nonlinear integro differential equation of the second kind with:

f(x) = 2e2x − 1
24e

x, k1 = 0, k2 = ex−4t, y(0) = 1, j = 1.

We can write Eq. (1.1)

y′(x) = 2e2x − 1

24
ex +

1

24

∫ 1

0
ex−4ty2(t)dt. (5.1)

Taking Laplace transform of both sides of Eq. (5.1) gives

£{y′(x)} = £{2e2x − 1

24
ex}+ 1

24
£{ex−4t ∗ y2(x)},

so that

sY (s)− y(0) =
2

s− 2
− 1

24(s− 1)
+

1

24(s− 1)
£{y2(x)},

or equivalently

Y (s) =
1

s
+

2

s(s− 2)
− 1

24s(s− 1)
+

1

24s(s− 1)
£{y2(x)}. (5.2)

Substituting the series assumption for Y (s) and the Adomian polynomials for y2(x) as given
above in Eq. (2.5) and Eq. (2.6) respectively, and using the recursive relation Eq. (2.12) we
obtain

Y0(s) =
1

s
+

2

s(s− 2)
− 1

24s(s− 1)

£{yk+1(x)} =
1

24s(s− 1)
£{Bk(x)}, k ≥ 0, (5.3)
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where Bk(x) are the Adomian polynomials for the nonlinear term y2(x). The Adomian poly-
nomials for G2(y(x)) = y2(x) are given by

B0 = y20,

B1 = 2y1y0,

B2 = 2y2y0 + y21,

B3 = 2y3y0 + 2y1y2. (5.4)

Taking the inverse Laplace transform of both sides of the first part of Eq. (5.3), and using the
recursive relation Eq. (5.3) gives

y0 = 1 + (2− 1

24
)x+ (4− 1

24
)
x2

2!
+ (8− 1

24
)
x3

3!
+ ...,

y1 =
1

24
(
x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+ . . . ),

(5.5)

and so on for other components. Using Eq. (2.5), the series solution is therefore given by

y(x) = 1 + 2x+
1

2!
(2x)2 +

1

3!
(2x)3 +

1

4!
(2x)4 + . . . , (5.6)

that converges to the exact solution

y(x) = e2x.

Example 5.2. Consider the nonlinear Volterra-Fredholm integro differential equation of the
second kind with:

f(x) = −xex, y(0) = 1, j = 1, k1 = ex−3t, k2 = ex−2t,

we can write Eq. (1.1)

y′(x) = −xex +

∫ x

0
ex−3ty3(t)dt+

∫ 1

0
ex−2ty2(t)dt, y(0) = 1. (5.7)

Taking Laplace transform of both sides of Eq. (5.7) gives

£{y′(x)} = £{−xex}+£{ex−3t ∗ y3(x)}+£{ex−2t ∗ y2(x)},

so that

sY (s)− y(0) =
−1

(s− 1)2
+

1

(s− 1)
£{y3(x)}+ 1

(s− 1)
£{y2(x)},

or equivalently

Y (s) =
1

s
− 1

s(s− 1)2
+

1

s(s− 1)
[£{y3(x)}+£{y2(x)}].
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Substituting the series assumption for Y (s) and the Adomian polynomials for y3(x) as given
above in Eq. (2.5) and Eq. (2.6) respectively, and using the recursive relation Eq. (2.12) we
obtain

Y0(s) =
1

s
− 1

s(s− 1)2

£{yk+1(x)} =
1

s(s− 1)
[£{Ak(x)}+£{Bk(x)}], k ≥ 0, (5.8)

where Ak(x) and Bk(x) are the Adomian polynomials for the nonlinear term y3(x) and y2(x)
respectively. The Adomian polynomials for G1(y(x)) = y3(x) and G2(y(x)) = y2(x) are
given by

A0 = y30,

A1 = 3y1y
2
0,

A2 = 3y2y
2
0 + 3y21y0,

A3 = 3y3y
2
0 + 6y0y1y2 + y31,

and

B0 = y20,

B1 = 2y1y0,

B2 = 2y2y0 + y21,

B3 = 2y3y0 + 2y1y2, (5.9)

Taking the inverse Laplace transform of both sides of the first part of Eq. (5.8), and using the
recursive relation Eq. (5.8) gives

y0 = ex − xex,

= 1− 1

2!
x2 − 1

3
x3 − 1

8
x4 − ...,

y1 = 2

[
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + ...

]
,

.

.

.

that converges to the exact solution

y(x) = ex.

Example 5.3. Consider the nonlinear integro differential equation of the second kind with:

f(x) = 9
4 − 5

2x− 1
2x

2 − 3e−x − 1
4e

−2x, k1 = (x− t), k2 = 0,
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we can write Eq. (1.1)

y′(x) =
9

4
− 5

2
x− 1

2
x2 − 3e−x − 1

4
e−2x +

∫ x

0
(x− t)y2(t)dt, y(0) = 2. (5.10)

Taking Laplace transform of both sides of Eq. (5.10) gives

£{y′(x)} = £{9
4
− 5

2
x− 1

2
x2 − 3e−x − 1

4
e−2x}+£{(x− t) ∗ y2(x)},

so that

sY (s)− y(0) =
9

4s
− 5

2s2
− 1

s3
− 3

(s+ 1)
− 1

4(s+ 2)
+

1

s2
£{y2(x)},

or equivalently

Y (s) =
2

s
+

9

4s2
− 5

2s3
− 1

s4
− 3

s(s+ 1)
− 1

4s(s+ 2)
+

1

s3
£{y2(x)}. (5.11)

Substituting the series assumption for Y (s) and the Adomian polynomials for y2(x) as given
above in Eq. (2.5) and Eq. (2.6) respectively, and using the recursive relation Eq. (2.12) we
obtain

Y0(s) =
2

s
+

9

4s2
− 5

2s3
− 1

s4
− 3

s(s+ 1)
− 1

4s(s+ 2)

£{yk+1(x)} =
1

s3
£{Ak(x)}, k ≥ 0. (5.12)

where Ak(x) are the Adomian polynomials for the nonlinear term y2(x). The Adomian poly-
nomials for G1(y(x)) = y2(x) are given by

A0 = y20,

A1 = 2y1y0,

A2 = 2y2y0 + y21,

A3 = 2y3y0 + 2y1y2. (5.13)

Taking the inverse Laplace transform of both sides of the first part of Eq. (5.12), and using the
recursive relation Eq. (5.12) gives

y0 = 2− x+
1

2!
x2 − 5

3!
x3 +

5

4!
x4 − ...,

y1 =
2

3
x3 − 1

3!
x4 +

1

20
x5 + ..., (5.14)

and so on for other components. Using Eq. (2.5), the series solution is therefore given by

y(x) = 2− x+
1

2!
x2 − 1

3!
x3 +

1

4!
x4 + ...,

that converges to the exact solution

y(x) = 1 + e−x.
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Example 5.4. Consider the following nonlinear Volterra-Fredholm integro differential equa-
tion of the first kind with:

f(x) = −9

5
− 5

2
x+

1

2
x2 + 2ex +

1

4
e2x + xex, k1 = (x− t)2, k2 = ex−t, y(0) = 2,

we can write Eq. (1.1)

−9

5
− 5

2
x+

1

2
x2 + 2ex +

1

4
e2x + xex =

∫ x

0
(x− t)2y2(t)dt+

∫ 1

0
ex−ty′(t)dt. (5.15)

Taking Laplace transform of both sides of Eq. (5.15) gives

− 9

5s
− 5

2s2
+

1

s3
+

2

s− 1
+

1

4(s− 2)
+

1

(s− 1)2
=

1

s2
£{y2(s)}+ 1

s− 1
(sY (s)− y(0))

so that

Y (s) =
2

s
+

s− 1

s
(− 9

5s
− 5

2s2
+

1

s3
+

2

s− 1
+

1

4(s− 2)
+

1

(s− 1)2
)− s− 1

s3
£{y2(x)}

(5.16)

Substituting the series assumption for Y (s) and the Adomian polynomials for y2(x) as given
above in Eq. (2.5) and Eq. (2.6) respectively, and using the recursive relation Eq. (2.12) we
obtain

Y0(s) =
2

s
+

s− 1

s

(
− 9

5s
− 5

2s2
+

1

s3
+

2

s− 1
+

1

4(s− 2)
+

1

(s− 1)2

)
,

£{yk+1(x)} = −s− 1

s3
£{Ak(x)}, k ≥ 0. (5.17)

where Ak(x) are the Adomian polynomials for the nonlinear term y2(x). The Adomian poly-
nomials for G1(y(x)) = y2(x) are given by

A0 = y20,

A1 = 2y1y0,

A2 = 2y2y0 + y21,

A3 = 2y3y0 + 2y1y2, (5.18)

Taking the inverse Laplace transform of both sides of the first part of Eqs.(5.17), and using the
recursive relation Eq. (5.17) gives

y0 = 2 + x+
5

2
x2 +

1

6
x3 +

1

8
x4 + ...,

y1 = −2x2 − 3

4
x4 − 1

10
x5 + ...,

(5.19)

and so on for other components. Using Eq. (2.5), the series solution is therefore given by

y(x) = 2 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + ..., (5.20)
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that converges to the exact solution

y(x) = 1 + ex

6. CONCLUSIONS

The main idea of this work was to give a simple method for solving the Volterra-Fredholm in-
tegro differential equations (VFIDEs). We carefully applied a reliable modification of Laplace
Adomian decomposition method for VFIDEs. The main advantage of this method is the fact
that it gives the analytical solution. Also, this method is combining of two powerful meth-
ods for obtaining exact solutions of nonlinear (VFIDEs). In the above examples we observed
that the MLADM with the initial approximation obtained from initial conditions yields a good
approximation to the exact solution only in a few iterations. It is also worth noting that the
advantage of the decomposition methodology displays a fast convergence of the solutions.
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