• Title/Summary/Keyword: Volterra integral equations

Search Result 29, Processing Time 0.023 seconds

AN INVESTIGATION ON THE EXISTENCE AND UNIQUENESS ANALYSIS OF THE FRACTIONAL NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.237-249
    • /
    • 2023
  • In this paper, by means of the Schauder fixed point theorem and Arzela-Ascoli theorem, the existence and uniqueness of solutions for a class of not instantaneous impulsive problems of nonlinear fractional functional Volterra-Fredholm integro-differential equations are investigated. An example is given to illustrate the main results.

RETARDED NONLINEAR INTEGRAL INEQUALITIES OF GRONWALL-BELLMAN-PACHPATTE TYPE AND THEIR APPLICATIONS

  • Abdul Shakoor;Mahvish Samar;Samad Wali;Muzammil Saleem
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.54-70
    • /
    • 2023
  • In this article, we state and prove several new retarded nonlinear integral and integro-differential inequalities of Gronwall-Bellman-Pachpatte type. These inequalities generalize some former famous inequalities and can be used in examining the existence, uniqueness, boundedness, stability, asymptotic behaviour, quantitative and qualitative properties of solutions of nonlinear differential and integral equations. Applications are provided to demonstrate the strength of our inequalities in estimating the boundedness and global existence of the solution to initial value problem for nonlinear integro-differential equation and Volterra type retarded nonlinear equation. This research work will ensure to open the new opportunities for studying of nonlinear dynamic inequalities on time scale structure of varying nature.

ANALYSIS OF HILFER FRACTIONAL VOLTERRA-FREDHOLM SYSTEM

  • Saif Aldeen M. Jameel;Saja Abdul Rahman;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.259-273
    • /
    • 2024
  • In this manuscript, we study the sufficient conditions for existence and uniqueness results of solutions of impulsive Hilfer fractional Volterra-Fredholm integro-differential equations with integral boundary conditions. Fractional calculus and Banach contraction theorem used to prove the uniqueness of results. Moreover, we also establish Hyers-Ulam stability for this problem. An example is also presented at the end.

A ROBUST NUMERICAL TECHNIQUE FOR SOLVING NON-LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH BOUNDARY LAYER

  • Cakir, Firat;Cakir, Musa;Cakir, Hayriye Guckir
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.939-955
    • /
    • 2022
  • In this paper, we study a first-order non-linear singularly perturbed Volterra integro-differential equation (SPVIDE). We discretize the problem by a uniform difference scheme on a Bakhvalov-Shishkin mesh. The scheme is constructed by the method of integral identities with exponential basis functions and integral terms are handled with interpolating quadrature rules with remainder terms. An effective quasi-linearization technique is employed for the algorithm. We establish the error estimates and demonstrate that the scheme on Bakhvalov-Shishkin mesh is O(N-1) uniformly convergent, where N is the mesh parameter. The numerical results on a couple of examples are also provided to confirm the theoretical analysis.

Spherically symmetric transient responses of functionally graded magneto-electro-elastic hollow sphere

  • Wang, H.M.;Ding, H.J.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.525-542
    • /
    • 2006
  • On the basis of equilibrium equations for static electric and magnetic fields, two unknown functions related to electric and magnetic fields were firstly introduced to rewrite the governing equations, boundary conditions and initial conditions for mechanical field. Then by introducing a dependent variable and a special function satisfying the inhomogeneous mechanical boundary conditions, the governing equation for a new variable with homogeneous mechanical boundary conditions is obtained. By using the separation of variables technique as well as the electric and magnetic boundary conditions, the dynamic problem of a functionally graded magneto-electro-elastic hollow sphere under spherically symmetric deformation is transformed to two Volterra integral equations of the second kind about two unknown functions of time. Cubic Hermite polynomials are adopted to approximate the two undetermined functions at each time subinterval and the recursive formula for solving the integral equations is derived. Transient responses of displacements, stresses, electric and magnetic potentials are completely determined at the end. Numerical results are presented and discussed.

COLLOCATION APPROXIMATIONS FOR INTEGRO-DIFFERENTIAL EQUATIONS

  • Choi, Moon-Ja
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.35-51
    • /
    • 1993
  • This paper concerns collocation methods for integro-differential equations in which memory kernels have a singularity at t = 0. There has been extensive research in recent years on Volterra integral and integro-differential equations for physical systems with memory effects in which the stabilty and asymtotic stability of solutionsl have been the main interest. We will study a class of hereditary equations with singular kernels which interpolate between well known model equations as the order of singularity varies. We are also concerned with the smoothing effect of singular kernels, but we use energy methods and our results involve fractional time in fixed spatial norms. Galerkin methods for our models was studied and existence, uniqueness and stability results was obtained in [4]. Our major goal is to study collocation methods.

  • PDF

Transient analysis of two dissimilar FGM layers with multiple interface cracks

  • Fallahnejad, Mehrdad;Bagheri, Rasul;Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.277-281
    • /
    • 2018
  • The analytical solution of two functionally graded layers with Volterra type screw dislocation is investigated under anti-plane shear impact loading. The energy dissipation of FGM layers is modeled by viscous damping and the properties of the materials are assumed to change exponentially along the thickness of the layers. In this study, the rate of gradual change ofshear moduli, mass density and damping constant are assumed to be same. At first, the stress fields in the interface of the FGM layers are derived by using a single dislocation. Then, by determining a distributed dislocation density on the crack surface and by using the Fourier and Laplace integral transforms, the problem are reduce to a system ofsingular integral equations with simple Cauchy kernel. The dynamic stress intensity factors are determined by numerical Laplace inversion and the distributed dislocation technique. Finally, various examples are provided to investigate the effects of the geometrical parameters, material properties, viscous damping and cracks configuration on the dynamic fracture behavior of the interacting cracks.