• 제목/요약/키워드: Voltammetric measurements

검색결과 23건 처리시간 0.02초

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Srivastava, Juhi;Kushwaha, Archana;Singh, Meenakshi
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850131.1-1850131.19
    • /
    • 2018
  • In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.

Electrochemical oxidation-reduction and determination of urea at enzyme free PPY-GO electrode

  • Mudila, Harish;Prasher, Parteek;Rana, Sweta;Khati, Beena;Zaidi, M.G.H.
    • Carbon letters
    • /
    • 제26권
    • /
    • pp.88-94
    • /
    • 2018
  • This manuscript explains the effective determination of urea by redox cyclic voltammetric analysis, for which a modified polypyrrole-graphene oxide (PPY-GO, GO 20% w/w of PPY) nanocomposite electrode was developed. Cyclic voltammetry measurements revealed an effective electron transfer in 0.1 M KOH electrolytic solution in the potential window range of 0 to 0.6 V. This PPY-GO modified electrode exhibited a moderate electrocatalytic effect towards urea oxidation, thereby allowing its determination in an electrolytic solution. The linear dependence of the current vs. urea concentration was reached using square-wave voltammetry in the concentration range of urea between 0.5 to $3.0{\mu}M$ with a relatively low limit of detection of $0.27{\mu}M$. The scanning electron microscopy was used to characterize the morphologies and properties of the nanocomposite layer, along with Fourier transform infrared spectroscopy. The results indicated that the nanocomposite film modified electrode exhibited a synergistic effect, including high conductivity, a fast electron-transfer rate, and an inherent catalytic ability.

Electrochemical, Antifungal, Antibacterial and DNA Cleavage Studies of Some Co(II), Ni(II), Cu(II) and Zn(II)-Copolymer Complexes

  • Dhanaraj, C. Justin;Nair, M. Sivasankaran
    • Mycobiology
    • /
    • 제36권4호
    • /
    • pp.260-265
    • /
    • 2008
  • Cyclic voltammetric measurements were performed for Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-succinic anhydride) (L) and Ni(II) and Cu(II) complexes of 1 : 1 alternating copolymer, poly(3-nitrobenzylidene-1-naphthylamine-co-methacrylic acid) ($L^1$). The in vitro biological screening effects of the investigated compounds were tested against the fungal species including Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans and bacterial species including Staphylococcus aureus, Escherichia coli, Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa by well diffusion method. A comparative study of inhibition values of the copolymers and their complexes indicates that the complexes exhibit higher antimicrobial activity. Copper ions are proven to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium. The nuclease activity of the above metal complexes were assessed by gel electrophoresis assay and the results show that the copper complexes can cleave pUC18 DNA effectively in presence of hydrogen peroxide compared to other metal complexes. The degradation experiments using Rhodamine B dye indicate that the hydroxyl radical species are involved in the DNA cleavage reactions.

ELECTROCHROMIC BEHAVIOR OF AMORPHOUS NICKELPHTHALOCYANINE THIN FILMS

  • Masui, Masayoshi;Suzuki, Masato;Kaneko, Fujio;Takeuchi, Manabu
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.735-738
    • /
    • 1996
  • Amorphous nickelphthalocyanine(NiPc) thin films were prepared by vacuum evaporation and their electrochromic behavior and voltammograms were examined in the five kinds of aqueous electrolytes. Amorphous NiPc films were prepared on indium-tin-oxide(ITO) glass substrates cooled to-$120^{\circ}C$ by using liquid nitrogen under a vacuum of $2.4 \times 10^{-4}$. The voltammetric and electrochromic measurements were made using a potential galvanostat. In order to confirm the color change, optical vis-transmission spectra of the NiPc films were measured by a spectrophotometer with various electrode potential applied. The NiPc amorphous thin films exhibited most clearly electrochromism in $KNO_3$ aqueous electrolyte. The specimen films underwent 3 color transitions (from blue to yellow-green, then to red violet, then to dark blue), corresponding to the three peaks on the voltammograms in $KNO_3$ aqueous electrolyte. Blue is color of the as-prepared film. When the potential was swept, charge compensation was attained upon oxidation by injection of anions from the electrolyte and upon reduction by expulsion of anions.

  • PDF

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun;Ko, Eun-Song;Shin, Ik-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.96-100
    • /
    • 2017
  • Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

Kinetic Study of the Electrooxidation of Mefenamic Acid and Indomethacin Catalysed on Cobalt Hydroxide Modified Glassy Carbon Electrode

  • Saghatforoush, Lotfali.;Hasanzadeh, Mohammad.;Karim-Nezhad, Ghasem.;Ershad, Sohrab.;Shadjou, Nasrin.;Khalilzadeh, Balal.;Hajjizadeh, Maryam.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1341-1348
    • /
    • 2009
  • Electrocatalytic oxidation of two anti-inflammatory drugs (Mefenamic acid and Indomethacin) was investigated on a cobalt hydroxide modified glassy carbon (CHM-GC) electrode in alkaline solution. The process of oxidation and its kinetics were established by using cyclic voltammetry and chronoamperometry techniques as well as steady state polarization measurements. Voltammetric studies indicated that in the presence of under study drugs, the anodic peak current of low-valence cobalt species increased, followed by a decrease in the corresponding cathodic current. This result indicates that the drugs were oxidized via cobalt hydroxide species immobilized on the electrode surface via an E$\acute{C}$ mechanism. A mechanism based on the electrochemical generation of Co (IV) active sites and their subsequent consumption by the drugs in question was also investigated. The constants rate of the catalytic oxidation of the drugs and the electron-transfer coefficients reported.

A Quartz Tube Based Ag/Ag+ Reference Electrode with a Tungsten Tip Junction for an Electrochemical Study in Molten Salts

  • Park, Y.J.;Jung, Y.J.;Min, S.K.;Cho, Y.H.;Im, H.J.;Yeon, J.W.;Song, K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.133-136
    • /
    • 2009
  • A newly designed Ag/$Ag^+$ reference electrode in a quartz tube with a tungsten tip junction (W-tip-Quartz- REF) was fabricated and its electrochemical performance was compared with a conventional Pyrex tube-based Ag/$Ag^+$ reference electrode (Py-REF). The results of the electrochemical potential measurements with the W-tip-Quartz- REF and the Py-REF in the LiCl-KCl eutectic melts for a wide temperature range proved that the oxide layer on the surface of the tungsten metal tip provided a high ionic conduction. Stability of our newly designed W-tip- Quartz-REF was tested by measuring a junction potential for 12 hours at 700${^{\circ}C}$. The results of the cyclic voltammetric measurement indicated that the Ag/$Ag^+$ reference electrode in the quartz tube with a tungsten tip junction can provide a good performance for a wide temperature range.

Electrochromic Performance of NiOx Thin Film on Flexible PET/ITO Prepared by Nanocrystallite-Dispersion Sol

  • Kwak, Jun Young;Jung, Young Hee;Park, Juyun;Kang, Yong-Chul;Kim, Yeong Il
    • 대한화학회지
    • /
    • 제65권2호
    • /
    • pp.125-132
    • /
    • 2021
  • An electrochromic nickel oxide thin film was fabricated on a flexible PET/ITO substrate using a nanocrystallite- dispersed coating sol and bar coater. Nanocrystalline NiOx of 3-4 nm crystallite size was first synthesized by base precipitation and thermal conversion. This NiOx nanocrystallite powder was mechanically dispersed in an alcoholic solvent mixed with a silane binder to prepare a coating sol for thin film. This sol method is different from the normal sol-gel method in that it does not require the conversion of precursor by heat treatment. Therefore, this method provides a very facile method to prepare NiOx thin films on any kind of substrate and it can be easily applied to mass production. The electrochromic performance of this NiOx thin film on PET/ITO electrode with a thickness of about 400 nm was investigated in a nonaqueous LiClO4 electrolyte solution by cyclic voltammetric and repeated chronoamperometric measurements in conjunction with spectrophotometry. The visible light modulation of 44% and the colorization efficiency of 41 ㎠/C at 550 nm were obtained at the step potentials of -0.8/+1.2 V vs Ag and a duration of 30 s.

Determination of Heavy Metals in Sea Salt Using Anodic Stripping Voltammetry

  • Kim, Yong Hoon;Kim, Giyoung
    • 산업식품공학
    • /
    • 제21권2호
    • /
    • pp.180-186
    • /
    • 2017
  • Salt, as food, is the most essential element for human survival due to its significant physiological functions. Here, we report the simultaneous detection of Pb and Cd in sea salt by square wave anodic stripping voltammetry (SWASV). Stripping voltammetric measurements were conducted using a manufactured rotating disk electrode system (MRDES). The detection limit was $3.6{\pm}0.18{\mu}gL^{-1}$ for Pb and $3.9{\pm}0.37{\mu}gL^{-1}$ Cd in NaCl solution. When the pH increased from 5.5 to 8.5, the peak currents of Pb and Cd decreased. At a pH of 8.3, the ratio of the current drop compared with that at a pH of 5.5 was 0.6 for Pb and 0.73 for Cd. The concentrations corrected by the current drop are in agreement with the concentrations obtained with ICP (inductively coupled plasma). This system demonstrates the reliable detection of heavy metals in aqueous media and, at a high $Na^+$ concentration, the successful application for the determination of Pb and Cd in sea salts.

적외선 광 다이오드를 사용한 철의 전압전류 정량 (Voltammetric measurements of iron using an infrared photodiode electrode)

  • 이수영;정영삼;이현규;곽규주;김건우;김종형;정호영;김봉균;전석주;장진원
    • 분석과학
    • /
    • 제20권4호
    • /
    • pp.289-295
    • /
    • 2007
  • 사각파형 벗김 전압 전류법과 순환 전압 전류법에서 적외선 광 다이오드의 간단한 전자 회로를 사용한 철의 정량을 연구하였다. 기존에 사용되는 작업 전극과 최적 분석 조건을 비교하였으며, 순환 전압 전류법의 결과는 보다 간단하며 정밀하였으며, 최적 조건에서 농도 범위는 0.1-0.8과 0.85-6.0 mg/L 이었다, 0.4 mg/L의 철 농도에서 15번 반복 측정한 상대 표준편차는 0.09%였으며, 최소 분석 검출 한계는 $80{\pm}0.6{\mu}g/L$ 였다, 이결과는 폐수중의 철 정량에 응용하였다.