DOI QR코드

DOI QR Code

Voltammetric measurements of iron using an infrared photodiode electrode

적외선 광 다이오드를 사용한 철의 전압전류 정량

  • Ly, Suw Young (Biosensor Research Institute, Seoul National University of Technology) ;
  • June, Young Sam (Department of Chemistry Korea University) ;
  • Lee, Hyun Ku (Biosensor Research Institute, Seoul National University of Technology) ;
  • Kwak, Kyu Ju (Department of Chemistry, Yonsei University) ;
  • Kim, Kun Woo (Advanced Scientific Experiment group in DaeJin High school) ;
  • Kim, Jong Hyoung (Advanced Scientific Experiment group in DaeJin High school) ;
  • Jeong, Ho Young (Advanced Scientific Experiment group in DaeJin High school) ;
  • Kim, Bong Kyun (Advanced Scientific Experiment group in DaeJin High school) ;
  • Chun, Seok Joo (Advanced Scientific Experiment group in DaeJin High school) ;
  • Chang, Jin Won (Advanced Scientific Experiment group in DaeJin High school)
  • 이수영 (서울산업대학교 바이오센서연구소) ;
  • 정영삼 (고려대학교 화학과) ;
  • 이현규 (서울산업대학교 바이오센서연구소) ;
  • 곽규주 (연세대학교 화학과) ;
  • 김건우 (대진고등학교 과학부) ;
  • 김종형 (대진고등학교 과학부) ;
  • 정호영 (대진고등학교 과학부) ;
  • 김봉균 (대진고등학교 과학부) ;
  • 전석주 (대진고등학교 과학부) ;
  • 장진원 (대진고등학교 과학부)
  • Received : 2007.06.18
  • Accepted : 2007.07.23
  • Published : 2007.08.25

Abstract

A simple electric circuit of an infrared photodiode electrode (IPDE) was utilized to monitor iron using square-wave (SW) anodic stripping voltammetry (SV) and cyclic voltammetry (CV). The optimum analytical conditions were determined and were compared with those of common working electrodes. The comparison showed that CV is more sensitive and convenient to use than the common voltammetry methods. At the optimized conditions, the working ranges of 0.1- to 0.8- and 0.85- to 6.0 mg/L iron was obtained. Relative standard deviation of 15 measurements of iron (0.4 mg/L) was 0.09%. The analytical detection limit was found to be $80{\pm}0.6ug/L$, which was applied to iron in waste water.

사각파형 벗김 전압 전류법과 순환 전압 전류법에서 적외선 광 다이오드의 간단한 전자 회로를 사용한 철의 정량을 연구하였다. 기존에 사용되는 작업 전극과 최적 분석 조건을 비교하였으며, 순환 전압 전류법의 결과는 보다 간단하며 정밀하였으며, 최적 조건에서 농도 범위는 0.1-0.8과 0.85-6.0 mg/L 이었다, 0.4 mg/L의 철 농도에서 15번 반복 측정한 상대 표준편차는 0.09%였으며, 최소 분석 검출 한계는 $80{\pm}0.6{\mu}g/L$ 였다, 이결과는 폐수중의 철 정량에 응용하였다.

Keywords

References

  1. M. C. Lohan, A. M. Aguilar-Islasb, R. P. Franksa and K. W. Bruland, Anal Chim Acta 530, 121 (2005) https://doi.org/10.1016/j.aca.2004.09.005
  2. C. C. Calvert, A. Brown, R. Brydson, J Electron Spectrosc 143, 173 (2005) https://doi.org/10.1016/j.elspec.2004.03.012
  3. I. R. Santos, E. V. S. Filho, C. E. G. R. Schaefer, M. R. A. Fiho, and L. S. Campos, Mar Pollut Bull 50, 185 (2005) https://doi.org/10.1016/j.marpolbul.2004.10.009
  4. C. Pons, R. Forteza and V. Cerda, Anal Chim Acta 528, 197 (2005) https://doi.org/10.1016/j.aca.2004.08.023
  5. Z. Ozdemir, and P. brutia, Turkey, Chemie der Erde 65, 79 (2005) https://doi.org/10.1016/j.chemer.2003.09.001
  6. C. F. Harrington, S. Elahi, S. A. Merson and P. Ponnampalavanar Anal. Chem.73,4422 (2001) https://doi.org/10.1021/ac0010431
  7. M. Fredrikson, N. G. Carlsson, A. Almgren and A. Sandberg, J. Agr. Food Chem. 50, 59 (2002)
  8. R. Lara, S. Cerutti, J. A. Salonia, R. A. Olsina and L. D. Martinez, Food Chem Toxicol 43, 293 (2005) https://doi.org/10.1016/j.fct.2004.10.004
  9. P Garcia, C. Romero, M. Brenes and A. Garrido, J. Agric. Food Chem. 50, 3654 (2002)
  10. J. Wang, J. Lu, S. Y. Ly, M. Vuki, B. Tian, W.K. Adeniyi and R. A. Armendariz, Anal. Chem. 2659 (2000)
  11. S. Y. Ly, D. H. Kim and M. H. Kim, Talanta 58, 919 (2002)
  12. S. Y. Ly, J. I. Chae, Y. S. Jung, W. W. Jung, H. J. Lee and S. H. Lee, Nahrung/Food 48, 201 (2004) https://doi.org/10.1002/food.200300394
  13. B. Nigovic and N. Kujundz¡ic, Polyhedron 21, 1661 (2002)
  14. P. L. Buldini, S. Cavalli, A. Mevoli and J.L. Sharma, Food Chem 73, 487 (2001) https://doi.org/10.1016/S0308-8146(00)00318-6
  15. S. M. Chen, J Electroanal Chem 521, 29 (2002)
  16. I. H. M. Oorschot, T. Grygar, M. J. Dekkers, Earth Planet Sc Lett 93, 631 (2001)
  17. G. Lu, X. Yao, X. Wu and T. Zhan, Microchem J 69, 81 (2001)
  18. S. Ferro1 and A. D. Battisti, Electrochim Acta 47, 1641 (2002)
  19. D. L. Compton, J. A. Laszlo, J Electroanal Chem 520, 71 (2002)
  20. F. Miomandre, P. Audebert, M. Maumy and L. Uhl, J Electroanal Chem 516, 66 (2001) https://doi.org/10.1016/S0022-0728(01)00687-8
  21. D. Xiang, Q. Shen, S. Zhang, X. Jiang, J Appl Polym Sci 88, 1350 (2003) https://doi.org/10.1002/app.11841
  22. S. Jung, Y. Kang, H. S. Kim, Y. H. Kim, C. L. Lee, J. J. Kim, S. K. Lee and S. K. Kwon, Eur. J. Inorg. Chem. 3415 (2004)
  23. M. Bouachrine, J. P. L. Porte, J. J. E. Moreau, F. S. Spirau, R.A. Silva, K. Lmimouni, L. Ouchani and C. Dufour, Synthetic Met 126, 241(2002)
  24. A. K. Mahler, H. Schlick, R. Saf, F. Stelzer, F. Meghdadi, A. Pogantsch, G. Leising, K.C. Moller and J.O. Besenhard and Macromol. Chem. Phys. 205, 1840 (2004)
  25. T. H. Degefa, B.S. Chandravanshi and H. Alemu, Electroanal 11, 1305 (1999)
  26. W. T. L. Silva, C. T. Gautier, M. O. O. Rezende and N. E. Murr, Electroanal 14, 71 (2002)
  27. M. J. G. Huebra, P. Hernandez and Y. Ballesteros, Talanta 54, 1077 (2001) https://doi.org/10.1016/S0039-9140(00)00608-1
  28. X. Zhang, B. Ogorevc, M. Rupnik, M. Kreft and R. Zorec, Anal Chim Acta 378, 135 (1999)