Browse > Article
http://dx.doi.org/10.5714/CL.2018.26.088

Electrochemical oxidation-reduction and determination of urea at enzyme free PPY-GO electrode  

Mudila, Harish (Department of Chemistry, G. B. Pant University of Agriculture & Technology)
Prasher, Parteek (Department of Chemistry, University of Petroleum and Energy Studies)
Rana, Sweta (Department of Chemistry, Lovely Professional University)
Khati, Beena (Department of Biotechnology, DBS Campus Bhimtal Kumaun University)
Zaidi, M.G.H. (Department of Chemistry, Lovely Professional University)
Publication Information
Carbon letters / v.26, no., 2018 , pp. 88-94 More about this Journal
Abstract
This manuscript explains the effective determination of urea by redox cyclic voltammetric analysis, for which a modified polypyrrole-graphene oxide (PPY-GO, GO 20% w/w of PPY) nanocomposite electrode was developed. Cyclic voltammetry measurements revealed an effective electron transfer in 0.1 M KOH electrolytic solution in the potential window range of 0 to 0.6 V. This PPY-GO modified electrode exhibited a moderate electrocatalytic effect towards urea oxidation, thereby allowing its determination in an electrolytic solution. The linear dependence of the current vs. urea concentration was reached using square-wave voltammetry in the concentration range of urea between 0.5 to $3.0{\mu}M$ with a relatively low limit of detection of $0.27{\mu}M$. The scanning electron microscopy was used to characterize the morphologies and properties of the nanocomposite layer, along with Fourier transform infrared spectroscopy. The results indicated that the nanocomposite film modified electrode exhibited a synergistic effect, including high conductivity, a fast electron-transfer rate, and an inherent catalytic ability.
Keywords
Polypyrrole; graphene oxide; polysulphone; urea; cyclic voltammetry; electrocatalytic effect; limit of detection;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sasso L, Heiskanen A, Diazzi F, Dimaki M, Castillo-Leon J, Vergani M, Landini E, Raiteri R, Ferrari G, Carminati M, Sampietro M, Svendsen WE, Emneus J. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations. Analyst, 138, 3651 (2013). DOI: 10.1039/c3an00085k.   DOI
2 Zhang T, Yuan R, Chai Y, Li W, Ling S. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on a Polypyrrole Nanowire-Copper Nanocomposite Modified Gold Electrode. Sensors, 8, 5141 (2008). DOI: 10.3390/s8085141   DOI
3 Yang G, Tan L, Shi Y, Wang S, Lu X, Bai H, Yang Y. Direct Determination of Uric Acid in Human Serum Samples Using Polypyrrole Nanoelectrode Ensembles. Bull. Korean Chem. Soc., 30(2), 454 (2009). DOI: https://doi.org/10.5012/bkcs.2009.30.2.454
4 Zhuang Z, Li J, Xu R, Xiao D. Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Overoxidized Polypyrrole/Graphene Modified Electrodes. Int. J. Electrochem. Sci., 6, 2149 (2011). DOI: 10.1016/j.talanta.2012.05.013
5 Shi W, Liu C, Song Y, Lin N, Zhou S, Cai X. An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. Biosens. Bioelectron. 38(1), 100 (2012). DOI:10.1016/j.bios.2012.05.004
6 Samseya J, Srinivasan R, Chang YT, Tsao CW, Vasantha VS. Fabrication and characterisation of high performance polypyrrole modified microarray sensor for ascorbic acid determination. Anal. Chim. Acta. 793, 11 (2013). DOI: 10.1016/j.aca.2013.06.049.   DOI
7 Ye D, Luo L, Ding Y, Chena Q, Liu X. A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst, 136, 4563 (2011). DOI: 10.1039/C1AN15486A   DOI
8 Raicopol M., Pruna A, Damian C, Pilan L. Functionalized singlewalled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Research Letters, 8, 316 (2013). DOI: 10.1186/1556-276X-8-316   DOI
9 Devadas B, Rajkumar M, Chen SM, Saraswathi R. Electrochemically Reduced Graphene Oxide/ Neodymium Hexacyanoferrate Modified Electrodes for the Electrochemical Detection of Paracetomol. Int. J. Electrochem. Sci. 7, 3339 (2012). www.electrochemsci.org/papers/vol7/7043339.pdf
10 Giribabu K, Suresh R, Manigandan R, Vijayalakshmi L, Stephen A, Narayanan V. Synthesis of reduced graphene oxide and its electrochemical sensing of 4-nitrophenol. AIP Conference Proceedings, 1512, 400 (2013). DOI: http://dx.doi.org/10.1063/1.4791080
11 Zhou N., J. Li, H. Chen, C. Liao and L. Chen. A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of $Hg^{2+}$. Analyst, 138, 1091 (2013). DOI: 10.1039/c2an36405k.   DOI
12 Dang X, Zheng J, Hu C, Wang S, Hu S. Hemoglobin biosensor based on reduced graphite oxide modified gold electrode array printed on paper. Chemical Sensors, 3(17), 1 (2013). DOI: http://www.cognizure.com/abstract.aspx?p=107637252
13 Jiang X, Chen K, Wang J, Shao K, Fu T, Shao F, Lu D, Liang J, Foda MF, Han H. Solid-state voltammetry-based electrochemical immune sensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels. Analyst, 138, 3388 (2013). DOI: 10.1039/c3an00056g.   DOI
14 Lee JH, El-Said WA, Oh BK, Choi JW. Enzyme-free glucose sensor based on Au nanobouquet fabricated indium tin oxide electrode. J Nanosci Nanotechnol. 14(11), 8432 (2014). DOI:10.1166/jnn.2014.9921   DOI
15 Baloach QU, Tahira A, Mallah AB, Abro MI, Uddin S, Willander M, Ibupoto ZH. A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures. Sensors (Basel). 16(11), 1878 (2016). DOI: 10.3390/s16111878   DOI
16 Bai Y, Yang W, Sun Y, Sun C. Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sensors and Actuators B: Chemical, 134(2), 471 (2008). DOI: 10.1016/j.snb.2008.05.028   DOI
17 Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L, Abramski KM. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Erdoped passively mode-locked fiber laser. Opt Express. 20(17), 19463 (2012). DOI: 10.1364/OE.20.019463.   DOI
18 Mudila H, Zaidi MGH, Rana S, Joshi V, Alam S. Enhanced Electrocapacitive Performance of Graphene Oxide Polypyrrole Nanocomposites. Int. J. of Chemical and Analytical Science. 4, 139 (2013). DOI:10.1016/j.ijcas.2013.09.001   DOI
19 Piccinini E, Bliem C, Rozman CR, Battaglini F, Azzaroni O. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosensors and Bioelectronics 92, 661 (2017). DOI: https://doi.org/10.1016/j.bios.2016.10.035   DOI
20 Prissanaroon OW, Sirivat A, Pigram, PJ, Brack N. Potentiometric Urea Biosensor Based on a Urease-Immobilized Polypyrrole. Macromolecular Symposia 354(1), 334, (2015). DOI: 10.1002/masy.201400087.
21 Bose S, Kim NH, Kuila T, Lau T and Lee JH. Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology, 22, 295202, 2011.   DOI
22 Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka. Journal of Electron Spectroscopy and Related Phenomena. 195, 145 (2014). DOI: http://dx.doi.org/10.1016/j.elspec.2014.07.003   DOI
23 Unnikrishnan L, Madamana P, Mohanty S, Nayak SK. Polysulfone/C30B Nanocomposite Membranes for Fuel Cell Applications: Effect of Various Sulfonating Agents. Polymer-Plastics Technology and Engineering, 51, 568 (2012) DOI:10.1080/03602559.2012.654580   DOI
24 Arain M, Nafady A, Sirajuddin, Ibupoto ZH, Sherazi T, Shaikh T, Abdul Niaz AN, Willander M, Simpler and highly sensitive enzyme free sensing of urea via NiO nanostructures modified electrode. RSC Adv., 6, 39001 (2016). DOI: 10.1039/C6RA00521G.   DOI
25 Mudila H, Rana S, Zaidi MGH, Alam S. Enhanced electrocapacitive performance and high power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature. Carbon Letters 15(3), 171 (2014). DOI: http://dx.doi.org/10.5714/CL.2014.15.3.171   DOI
26 Mudila H, Joshi V, Rana S, Zaidi MGH, Alam S. Comparative electrochemical study of sulphonated polysulphone binded graphene oxide supercapacitor in two electrolytes. Carbon Letters, 18, 43 (2016). DOI: http://dx.doi.org/10.5714/CL.2016.18.043   DOI
27 Manea F, Pop A, Radovan C, Malchev P, Bebeselea A, Burtica G, Picken S and Schoonman J. Voltammetric Detection of Urea on an Ag-Modified Zeolite-Expanded Graphite-Epoxy Composite Electrode. Sensors 8, 5806, 2008. DOI: 10.3390/s8095806.   DOI
28 Branzoi V, Musina A, Branzoi F. Amperometric Urea Biosensor Based Platinum Electrode Modified With A Composite Film. Rev. Roum. Chim., 56(9), 883 (2011). DOI: http://dx.doi.org/10.5772/52440
29 Singh M, Verma N, Garg AK, Redhu N. Urea biosensors. Sensors and Actuators B: Chemical, Sensors and Actuators B. 134, 345 (2008). DOI: 10.1016/j.snb.2008.04.025   DOI
30 Hamilton A. The Formation and Characterisation of a Polypyrrole Based Sensor for the Detection of Urea. National University of Ireland, Maynooth, PhD Thesis (2012).
31 Nicolau E, Fonseca JJ, Cabrera CR. Development of a Urea Bioprobe Based on Platinized Boron-Doped Diamond Electrodes. Electroanalysis, 24(11), 2102 (2012). DOI: 10.1002/elan.201200459.   DOI
32 Manea F, Pop A, Radovan C, Malchev P, Bebeselea A, Burtica G, Picken S, Schoonman J. Voltammetric Detection of Urea on an Ag-Modified Zeolite-Expanded Graphite-Epoxy Composite Electrode. Sensors, 8, 5806 (2008). DOI:10.3390/s8095806   DOI
33 Ivanova S, Ivanov Y, Godjevargova T. Urea Amperometric Biosensors Based on Nanostructured Polypyrrole and Poly Ortho-Phenylenediamine. Open Journal of Applied Biosensor. 2, 12 (2013). DOI:10.4236/ojab.2013.21002.   DOI
34 Mondal S, Sangaranarayanan MV. A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode. Sensors & Actuators: B. Chemical. 177, 478 (2013). DOI: 10.1016/j.snb.2012.11.031   DOI
35 Ramanavicius A, Ramanaviciene A, Malinauskas A. Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta., 51(27), 6025 (2006). DOI: http://dx.doi.org/10.1016/j.electacta.2005.11.052   DOI
36 Park SH, Jin JH, Min NK, Hong SI. Poly(3-methylthiophene)-Based Urea Sensors with Planar Pt Electrodes on Silicon Substrates. Journal of the Korean Physical Society, 40(1),17 (2002). DOI: 10.3938/jkps.40.17
37 Yang JK, Ha KS, Baek HS, Lee SS, Seo ML. Amperometric Determination of Urea Using Enzyme-Modified Carbon Paste Electrode. Bull. Korean Chem. Soc., 25(10), 1499 (2004). DOI: 10.5012/bkcs.2004.25.10.1499
38 Yoon H. Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials. 3, 524 (2013). DOI: 10.3390/nano3030524   DOI
39 Rick J, Chou TC. Amperometric protein sensor-fabricated as a polypyrrole, poly-aminophenylboronic acid bilayer. Biosensors and Bioelectronics, 22, 329 (2006). DOI: 10.1016/j.bios.2006.04.007   DOI
40 Chen Y, Elling, Lee YL, Chong SC. A Fast, Sensitive and Label Free Electrochemical DNA Sensor. Journal of Physics: Conference Series, 34, 204 (2006). DOI:10.1088/1742-6596/34/1/034   DOI
41 Tiwari DC, Jain R, Sharma S. Electrochemically deposited polyaniline/polypyrrole polymer film modified electrodes for determination of furazolidone drug. Journal of Scientific and Industrial Research, 66, 1011 (2007). DOI: http://nopr.niscair.res.in/handle/123456789/1347
42 Xing X, Liu S, Yu J, Lian W, Huang J. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosens Bioelectron. 31(1), 277 (2012). DOI: 10.1016/j.bios.2011.10.032.   DOI