• 제목/요약/키워드: Voltage-Current Control Scheme

검색결과 540건 처리시간 0.024초

단상 인버터 시스템에서 순환 전류 제어 기법에 관한 연구 (The Study of the Circulation Current Control Scheme on Single Phase Inverter System)

  • 이우철
    • 조명전기설비학회논문지
    • /
    • 제28권2호
    • /
    • pp.60-69
    • /
    • 2014
  • This paper proposed the circulation current control scheme in the single phase inverter system. The load experiment of the power conversion system including the UPS usually uses the passive components such as resistors and inductors. Therefore, the energy consumption is serious problem. In addition, the system is out of order when it is installed in the local area, and the load experiment can not perform adequately after troubleshooting, because there is no the load equipment, and the power capacity is not enough in the local area. The paper does the research on the circulation current control scheme, it does not need the load equipment, and the load current can reuse as the input current of the equipment. Instead of the conventional method the voltage-voltage and voltage-current control scheme introduced the parallel converter concept is newly proposed, and the validity of the proposed control scheme is investigated by both simulation and experimental results.

전류공유버스를 이용한 병렬 인버터 순시 제어기 설계 (Instantaneous Current Control for Parallel Inverter with a Current Share Bus)

  • 이창석;김시경
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.90-94
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employes active and reactive power control or frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed control scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

A Current Sharing Circuit for the Parallel Inverter

  • Lee, Chang-Seok;Kim, Si-Kyung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.176-181
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employs active and reactive power control of frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel-connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employees an instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Furthermore, the proposed control scheme is verified through the experiment in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

견인용 인버터를 위한 새로운 과변조 기법 (A New Overmodulation Strategy for Traction Dirve.)

  • 배본호;설승기;김상훈;이인석;한성수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.171-178
    • /
    • 1998
  • This paper proposes a new overmodulation strategy to give a better voltage utilization by tracking voltage vector along hexagon sides. This strategy enables the inverter to control both magnitude and angle of current. Therefore, the vector control using this strategy can lead to better output torque dynamics compared to the conventional slip frequency control with six-step voltage, which is widely used in the traction drive. In this strategy, the d-axis output voltage of a current controller to control the flux is conserved and the q-axis output voltage to control the torque is controlled to place the voltage vector on the hexagon boundary In case of overmodulation. The limited q-axis voltage is used for anti-windup of q-axis current controller. This paper also presents a new field weakening scheme which incorporate the proposed overmodulation strategy. In this scheme, the flux level is selected by both required current limit and the available maximum voltage along hexagon sides. The validity of the proposed overall scheme is confirmed by the computer simulations for a typical traction drive with a 210[㎾] induction motor.

  • PDF

Common-Mode Voltage and Current Harmonic Reduction for Five-Phase VSIs with Model Predictive Current Control

  • Vu, Huu-Cong;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1477-1485
    • /
    • 2019
  • This paper proposes an effective model predictive current control (MPCC) that involves using 10 virtual voltage vectors to reduce the current harmonics and common-mode voltage (CMV) for a two-level five-phase voltage source inverter (VSI). In the proposed scheme, 10 virtual voltage vectors are included to reduce the CMV and low-order current harmonics. These virtual voltage vectors are employed as the input control set for the MPCC. Among the 10 virtual voltage vectors, two are applied throughout the whole sampling period to reduce current ripples. The two selected virtual voltage vectors are based on location information of the reference voltage vector, and their duration times are calculated using a simple algorithm. This significantly reduces the computational burden. Simulation and experimental results are provided to verify the effectiveness of the proposed scheme.

교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어 (A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors)

  • 한근우;정영국;임영철
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

PWM 전압형 컨버터의 간접전류 제어기법 (Indirect Current Control Scheme in PWM Voltage - Sourecd Converter)

  • 김형철;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.370-372
    • /
    • 1996
  • A control scheme for the Voltage-sourced PWM converter based on space vector equations is introduced. The main advantages of this new control scheme are that sinusoidal line currents with nearly unity power factor, ripple-free DC voltage output are achevied without current sensors. The dynamical equations with battery model is derived. The proposed scheme is verified by computer simulation.

  • PDF

An Effective Control Scheme for Battery Charger System in Electric Vehicles

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.232-233
    • /
    • 2012
  • This paper presents an effective control scheme for an electric vehicle battery charger where a symmetrical bridgeless power factor-corrected converter and a buck converter are cascaded. Both converters have been popular in industries because of their high efficiency, low cost, and compact size, hence combining these converters makes the overall battery charging system strongly efficient. Moreover, this charger topology can operate at universal input voltage and attain a desired battery current and voltage without ripple. In order to achieve a unity input power factor and zero input current harmonic distortion, the proposed control scheme adopts duty ratio feed-forward control technique in both current and voltage control loop. Additionally, in the current loop, its reference is created by a phase-locked loop (PLL) block, leading to a pure sinusoidal input current although the input voltage waveform is being distorted. The feasibility and practical value of the proposed approach are verified by simulation and experiment with an 110V/60Hz ac line input and 1.5kW-72V dc output of the battery charging system.

  • PDF

Performance Improvement of Voltage-mode Controlled Interleaved Buck Converters

  • Veerachary Mummadi
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.104-108
    • /
    • 2005
  • This paper presents the performance improvement of voltage-mode controlled interleaved synchronous buck converters. This is a voltage-mode controlled scheme, where the controllers do not need an external saw-tooth generator for PWM generation and the loop design is easier. The controller implementation requires only a single error amplifier and gives almost current mode control performance. The control scheme uses voltage feedback with two loops similar to current mode control: one for the slow outer loop and the other for the faster inner PWM control loop. To improve the performance of the converter system a coupled inductor is used. This coupled inductor reduces the magnetic size and also improves the converter's transient performance without increasing the steady-state current ripple. The effectiveness of the proposed control scheme is demonstrated through PSIM simulations.

Reactive Current Assignment and Control for DFIG Based Wind Turbines during Grid Voltage Sag and Swell Conditions

  • Xu, Hailiang;Ma, Xiaojun;Sun, Dan
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.235-245
    • /
    • 2015
  • This paper proposes a reactive current assignment and control strategy for a doubly-fed induction generator (DFIG) based wind-turbine generation system under generic grid voltage sag or swell conditions. The system's active and reactive power constrains during grid faults are investigated with both the grid- and rotor-side convertors (GSC and RSC) maximum ampere limits considered. To meet the latest grid codes, especially the low- and high-voltage ride-through (LVRT and HVRT) requirements, an adaptive reactive current control scheme is investigated. In addition, a torque-oscillation suppression technique is designed to reduce the mechanism stress on turbine systems caused by intensive voltage variations. Simulation and experiment studies demonstrate the feasibility and effectiveness of the proposed control scheme to enhance the fault ride-through (FRT) capability of DFIG-based wind turbines during violent changes in grid voltage.