• Title/Summary/Keyword: Voltage harmonics

Search Result 833, Processing Time 0.025 seconds

Cost-Effective APF/UPS System with Seamless Mode Transfer

  • Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.195-204
    • /
    • 2015
  • In this paper, the development of a cost-effective active power filter/uninterruptible power supply (APF/UPS) system with seamless mode transfer is described. The proposed scheme employs a pulse-width-modulation (PWM) voltage-source inverter and has two operational modes. First, when the source voltage is normal, the system operates as an APF, which compensates for the harmonics and power factor while boosting the DC-link voltage to be ready for the disturbance, without an additional DC charging circuit. A simple algorithm to detect the load current harmonics is also proposed. Second, when the source voltage is out of the normal range (owing to sag, swell, or outage), it operates a UPS, which controls the output voltage constantly by discharging the DC-link capacitor. Furthermore, a seamless transfer method for the single-phase inverter between the APF mode and the UPS mode is also proposed, in which an IGBT switch with diodes is used as a static bypass switch. Dissimilar to a conventional SCR switch, the IGBT switch can implement a seamless mode transfer. During the UPS operation, when the source voltage returns to the normal range, the system operates as an APF. The proposed system has good transient and steady-state response characteristics. The APF, charging circuit, and UPS systems are implemented in one inverter system. Finally, the validity of the proposed scheme is investigated with simulated and experimental results for a prototype APF/UPS system rated at 3 kVA.

A Study on the Improvement of Output Waveform and Voltage Control in PWM Inverter (PWM 인버터의 출력파형개선 및 전압제어에 관한 연구)

  • 정원석;김국진;전희종;박충규
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.68-72
    • /
    • 1990
  • In this paper, the technique of particul-ar harmonics elimination in three-phase PWM Inverter is discussed. And voltage control technique is derived whereby harmonics eli-mination is possible in variable voltage variable frequency three-phase I.M. The results show that experiments are in a good agreement with simulation based on the theory.

  • PDF

Adaptive Harmonic Control for DC Input Voltage Fluctuation of PWM Inverter (PWM인버터의 DC입력전달 맥동에 대한 고조파 적응제어)

  • 이윤종;임남혁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.896-904
    • /
    • 1989
  • PWM techniques which eliminate and reduce harmonics of output voltage in PWM Inverter driving System with fluctuating input volotage are described. First, harmonic factors are analyzed from harmonic equation of general PWM waveform and by examination of control possiblity of each factor, controllable factor is selected. Applying controllable factor to NPWM, PWM techniques using reference wave and carrier wave modulation are introduced. Actually, by the experiment applied with this strategy, the reduction of harmonics of output voltage is confirmed.

  • PDF

Voltage Quality Analysis of Low Voltage Customer Connected to the Wind Generation System (풍력발전시스템에 연계된 저압수용가의 전압품질 분석)

  • Kim Moon Chan;Kim Hyun Jong;Kim Tae Ik;Yang Ik Jun;Na Kyoung Yun;Kim Se Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.233-235
    • /
    • 2004
  • Operation of wind turbines has impacts on the voltage quantity at the connected electricity network. Increasing penetration of wind energy makes necessary to study the power quality regarding voltage variations(sag, swell, interruption) and presence of harmonics in the id. This paper investigates the voltage quality of low voltage customers connected to wind generation system. To study the influences of wind power generation to low voltage power system, voltage data are collected in three house using PQM(Power Quality Monitoring) equipment during one month and analyzed regarding voltage variation and harmonics

  • PDF

Integrative Control of Series Active Power Filters for Source Voltage Unbalance Compensation and Power Factor Correction (전원 불평형과 역률을 보상하는 직렬형 능동전력필터의 통합적 제어)

  • Jang, Jeong-Ik;Seok, Jul-Ki;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.258-264
    • /
    • 2006
  • This paper presents an integrative control scheme for series-type active power filters combined with shunt passive filters not only to compensate for the source voltage unbalance and current harmonics but also to correct the power factor. To reduce the power capacity of the active filters, passive filters are connected in parallel. Diode rectifiers are replaced by the PWM converters in order to feed the real power back to the source. Power factor control is performed by changing the phase of the load voltage so that the phase of the source current coincides with that of the source voltage. The resultant voltage reference is the addition of the voltage component compensating for the source voltage unbalance and harmonic currents and the voltage component correcting the power factor. The validity of the proposed algorithm has been verified by experimental results.

PI and Fuzzy Logic Controller Based 3-Phase 4-Wire Shunt Active Filters for the Mitigation of Current Harmonics with the Id-Iq Control Strategy

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.914-921
    • /
    • 2011
  • Commencing with incandescent light bulbs, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and their response to problems caused by harmonics. The prevalent difficulties with harmonics are voltage and current waveform distortions. In addition, Electronic equipment like computers, battery chargers, electronic ballasts, variable frequency drives, and switching mode power supplies generate perilous amounts of harmonics. Issues related to harmonics are of a greater concern to engineers and building designers because they do more than just distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality is becoming more and more serious with each passing day. As a result, active power filters (APFs) have gained a lot of attention due to their excellent harmonic compensation. However, the performance of the active filters seems to have contradictions with different control techniques. The main objective of this paper is to analyze shunt active filters with fuzzy and pi controllers. To carry out this analysis, active and reactive current methods ($i_d-i_q$) are considered. Extensive simulations were carried out. The simulations were performed under balance, unbalanced and non sinusoidal conditions. The results validate the dynamic behavior of fuzzy logic controllers over PI controllers.

A Survey of the Harmonics Level on a Typical Household Loads by Field Measurements (현장 측정에 의한 일반 가정집 부하의 고조파 수준 조사)

  • Kim, Kyung-Chul;Oh, Kyung-Hoon;Choi, Hyoung-Bumb;Hong, Sa-Guen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.95-102
    • /
    • 2008
  • Typical household loads have nonlinear loads including a personal computer, video, refrigerator, microwave oven, TV, and audio set. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system. Harmonic field measurements have shown that the harmonic contents of a waveform varies with time. A cumulative probablistic approach is the most commonly used method to solve time varying harmonics. This paper provides in depth analysis on harmonics field measurement of the typical household loads for one year period and the survey is conducted with the objectives to identify the trends of harmonic distortion level present and indentify the future trends of metering in the presence of nonsinusoidal current and voltage waveforms in the system.

A Study on Inverter Voltage Control and harmonics Elimination Using Microprocessor (마이크로 프러세서를 이용한 인버터 전압제어와 고조파 제거에 관한 연구)

  • Chon, Byoung-Sil;Jeong, Dong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.12
    • /
    • pp.856-867
    • /
    • 1987
  • Microprocessor control of power-electronic equipment offers the possibility of improvements in manufacture, realizability, maintenance and servicing, and increased control flexibility. In this paper, simple microprocessor control with a view to approximating the polynomial equations which govern the commutation angles was consisdered. The theoretical analysis of this principle which govern the commutaton of power switches in order to cancel any predetermined harmonics and vary the fundamental rms voltage of the inverter output is described. Also the spectrum and harmonics were analyzed by HP-1000 computer. Practical aspect of the realization of a voltage controller based on a microprocessor and a suitable system for variable frequency inverter were also presented. The experimental test has been carried out on a Z-80 microcomputer and a single phase transistor inverter. The various results show the feasibility of obtainintg practically a single phase and a three phase inverter waveforms, which are highly desirable in most inverter applications.

  • PDF

Grid-Connected Inverter Using the Negative Conductance of Photovoltaic Power System (태양광 발전시스템의 네가티브 컨덕턴스를 이용한 계통연계형 인버터)

  • Lee, Chang-Hee;Park, Ki-Lack;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.45-48
    • /
    • 2002
  • This paper proposes a grid-connected inverter using the negative conductance of PV power system, which has four IGBTs and simple controller. Most of modern electric loads generate the current harmonics and the line voltage distortion. The new solar-to-ac converter(STAC) provides by emulating a negative conductance load to the line voltage, so the current harmonics from STAC is canceled the effect of the harmonics from other loads. As a result, the line voltage distortion is decreased. The proposed system have low cost, small size, and light weight compared to conventional photovoltaic converter

  • PDF

A Single-Phase Unified Power Quality Conditioner with a Frequency-Adaptive Repetitive Controller

  • Phan, Dang-Minh;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.790-799
    • /
    • 2018
  • This paper proposes a single-phase unified power quality conditioner (S-UPQC) for maintaining power quality issues in a microgrid. The S-UPQC can compensate the voltage and current harmonics, voltage sag, and swell as a dynamic voltage restorer (DVR), regardless of variations in the grid frequency. Odd harmonics are treated as even-order harmonics in a rotating frame to implement the harmonic compensators with only one repetitive controller (RC) without any harmonic extractor. The dynamic performance is improved and the delay time is reduced in the RC. The S-UPQC control scheme is designed to maintain accurate and stable operation under deviations of the grid frequency by using the Lagrange interpolation-based finite-impulse-response (LIFIR) filter approximation method. The proposed control schemes were validated through a simulation and experiment.