• 제목/요약/키워드: Voltage Switching.

검색결과 3,312건 처리시간 0.03초

Extension of the Dynamic Range using the Switching Operation of In-Pixel Inverter in Complementary Metal Oxide Semiconductor Image Sensors

  • Seong, Donghyun;Choi, Byoung-Soo;Kim, Sang-Hwan;Lee, Jimin;Lee, Jewon;Lee, Junwoo;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.71-75
    • /
    • 2019
  • This paper proposes the extension of the dynamic range in complementary metal oxide semiconductor (CMOS) image sensors (CIS) using switching operation of in-pixel inverter. A CMOS inverter is integrated in each unit pixel of the proposed CIS for switching operations. The n+/p-substrate photodiode junction capacitances are added to each unit pixel. When the output voltage of the photodiode is less than half of the power supply voltage of the CMOS inverter, the output voltage of the CMOS inverter changes from 0 V to the power supply voltage. Hence, the output voltage of the CMOS inverter is adjusted by changing the supply voltage of the CMOS inverter. Thus, the switching point is adjusted according to light intensity when the supply voltage of the CMOS inverter changes. Switching operations are then performed because the CMOS inverter is integrated with in each unit pixel. The proposed CIS is composed of a pixel array, multiplexers, shift registers, and biasing circuits. The size of the proposed pixel is $10{\mu}m{\times}10{\mu}m$. The number of pixels is $150(H){\times}220(V)$. The proposed CIS was fabricated using a $0.18{\mu}m$ 1-poly 6-metal CMOS standard process and its characteristics were experimentally analyzed.

A Single-Stage AC/DC Converter with Low Voltage Stresses and Reduced Switching Losses

  • Kim, Kyu-Tae;Choi, Woo-Young;Kwon, Jung-Min;Kwon, Bong-Hwan
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.823-834
    • /
    • 2009
  • This paper proposes a high-efficiency single-stage ac/dc converter. The proposed converter features low voltage stresses and reduced switching losses. It operates at the boundary of discontinuous- and continuous-conduction modes by employing variable switching frequency control. The turn-on switching loss of the switch can be reduced by turning it on when the voltage across it is at a minimum. The voltage across the bulk capacitor is independent of the output loads and maintained within the practical range for the universal line input, so the problem of high voltage stress across the bulk capacitor is alleviated. Moreover, the voltage stress of the output diodes is clamped to the output voltage, and the output diodes are turned off at zero-current. Thus, the reverse-recovery related losses of the output diodes are eliminated. The operational principles and circuit analysis are presented. A prototype circuit was built and tested for a 150 W (50V/3A) output power. The experimental results verify the performance of the proposed converter.

Feasible Power Loss Analysis and Estimation of Auxiliary Resonant DC Link Assisted Soft-Switching Inverter with New Zero Vector Generation Method

  • Manabu Kurokawa;Claudio Y. Inaba;M. Rukonuzzaman;Eiji Hiraki;Yoshihiro Konishi;Mutsuo Nakaoka
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.77-87
    • /
    • 2002
  • The purpose of this paper is to improve power conversion efficiency of three-phase soft-switching voltage-source inverter with an auxiliary resonant dc link (ARDCL) snubber circuit. Firstly, the operation principle of ARDCL snubber circuit is described. Secondly, this paper proposes an effictive generation method of zero voltage vector for three-phase voltage-source soft-switching inverter in power losses in which power losses in the ARDCL snubber circuit can be reduced. In particular, zero voltage holding interval in the inverter DC busline can be controlled due to the new generation scheme of zero voltage vector. Thirdly, a simulator for power loss analysis for power loss characteristics based on actual system, is developed. the validity of developed. The validity of developed simulator of proved with experimental results. Finally, power efficency of three-phase inverter is estimated according to high carrier frequency by using the simulatior.

A Modularized Equalizer for Supercapacitor Strings in Hybrid Energy Storage Systems

  • Gao, Zhigang;Jiang, Fenlin
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1469-1482
    • /
    • 2016
  • In hybrid energy storage systems, supercapacitors are usually connected in series to meet the required voltage levels. Equalizers are effective in prolonging the life of hybrid energy storage systems because they eliminate the voltage imbalance on cells. This study proposes a modularized equalizer, which is based on a combination of a half-bridge inverter, an inductor, and two auxiliary capacitors. The proposed equalizer inherits the advantages of inductor-based equalization systems, but it also offers unique merits, such as low switching losses and an easy-to-use control algorithm. The zero-voltage switching scheme is analyzed, and the power model is established. A fixed-frequency operation strategy is proposed to simplify the control and lower the cost. The switching patterns and conditions for zero-voltage switching are discussed. Simulation results based on PSIM are presented to verify the validity of the proposed equalizer. An equalization test for two supercapacitor cells is performed. An experimental hybrid energy storage system, which consists of batteries and supercapacitors, is established to verify the performance of the proposed equalizer. The analysis, simulation results, and experimental results are in good agreement, thus indicating that the circuit is practical.

A Secondary Resonance Soft Switching Half Bridge DC-DC Converter with an Inductive Output Filter

  • Chen, Zhang-yong;Chen, Yong
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1391-1401
    • /
    • 2017
  • In this paper, a secondary resonance half-bridge dc-dc converter with an inductive output filter is presented. The primary side of such a converter utilizes asymmetric pulse width modulation (APWM) to achieve zero-voltage switching (ZVS) of the switches, and clamps the voltage of the switch to the input voltage. In addition, zero current switching (ZCS) of the output diode is achieved by a half-wave rectifier circuit with a filter inductor and a resonant branch in the secondary side of the proposed converter. Thus, the switching losses and diode reverse-recovery losses are eliminated, and the performance of the converter can be improved. Furthermore, an inductive output filter exists in the converter reduce the output current ripple. The operational principle, performance analysis and design equation of this converter are given in this paper. The analysis results show that the output diode voltage stress is independent of the duty cycle, and that the voltage gain is almost linear, similar to that of the isolation Buck-type converter. Finally, a 200V~380V input, 24V/2A output experimental prototype is built to verify the theoretical analysis.

Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구 (A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation)

  • 정동효
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

순시 재 점등 메탈 할라이드 램프용 전자식 안정기 (Electronic Ballast for Metal Halide Lamps)

  • 문성진;조보형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 추계학술대회 논문집
    • /
    • pp.79-82
    • /
    • 2001
  • New electronic ballast for metal halide laws is proposed New ballast has higher efficiency than that of conventional ballast. Proposed 2 stage ballast uses low arm switch as synchronous rectifier mitch. Switch-on voltage drop is smaller than that of diode in small current(<1.5A). High arm switch is turned on in zero voltage in proposed ballast. So conduction loss and switching loss are reduced Index word - synchronous rectifier mitch, toro voltage switching, conduction loss, switching loss.

  • PDF

스위칭 주파수가 일정한 공진형 DC-DC코버어터 (Resinant DC-DC Converter with Constant Switching frequency)

  • 이윤종;김희준;안태영;박효식
    • 대한전기학회논문지
    • /
    • 제40권3호
    • /
    • pp.266-274
    • /
    • 1991
  • This paper proposed the resonant DC-DC converter with constant switching frequency. Its output is controlled by the auxiliary switch which is attached in conventional MRC circuits. The average output voltage is equal to the average voltage of the auxiliary switch. If the on time of the auxiliary switch is short, output voltage is decreased. Because of using the multi resonant method, the power loss from the parasitic elements can be decreased. Experimental performance of DF ZVS Forward MRC topology with switching frequency of 1MHz is presented.

Boost 입력형 능동클램프 Forward ZVS Converter (Characteristics of Boost Input Type Active Clamp Forward ZVS Converter)

  • 오용승;김희준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.386-389
    • /
    • 2002
  • This paper proposes the boost input type active clamp forward ZVS(zero voltage switching) DC-DC converter which can provide high efficiency and improved EMI characteristics. Moreover, it has active clamp circuit for reducing the voltage stress and zero voltage switching technique for minimizing switching loss. The detailed operation principles and the simulation results are presented.

  • PDF

순시적분에 의한 PWM인버어터의 직류 입력전압 맥동에 대한 고조파 적응제어 (Adaptive Harmonic Control against DC Input Voltage Fluctuation of PWM Inverter by Instantaneous Integration)

  • 박성준;권영안;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.721-723
    • /
    • 1993
  • A PWM switching control strategy based on instantaneous integration concept for reducing hamonic components of inverter system with fluctuating input voltage is presented. Applying this strategy to single phase full bridge PWM inverter through bipolor switching method and unipolor switching method, reduction of hamonic components of output voltage and current is demonstrated through simulation. The system operation is examined and confirmed by experiments.

  • PDF