• Title/Summary/Keyword: Volatile Memory

Search Result 304, Processing Time 0.021 seconds

A Novel Memory Hierarchy for Flash Memory Based Storage Systems

  • Yim, Keno-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.262-269
    • /
    • 2005
  • Semiconductor scientists and engineers ideally desire the faster but the cheaper non-volatile memory devices. In practice, no single device satisfies this desire because a faster device is expensive and a cheaper is slow. Therefore, in this paper, we use heterogeneous non-volatile memories and construct an efficient hierarchy for them. First, a small RAM device (e.g., MRAM, FRAM, and PRAM) is used as a write buffer of flash memory devices. Since the buffer is faster and does not have an erase operation, write can be done quickly in the buffer, making the write latency short. Also, if a write is requested to a data stored in the buffer, the write is directly processed in the buffer, reducing one write operation to flash storages. Second, we use many types of flash memories (e.g., SLC and MLC flash memories) in order to reduce the overall storage cost. Specifically, write requests are classified into two types, hot and cold, where hot data is vulnerable to be modified in the near future. Only hot data is stored in the faster SLC flash, while the cold is kept in slower MLC flash or NOR flash. The evaluation results show that the proposed hierarchy is effective at improving the access time of flash memory storages in a cost-effective manner thanks to the locality in memory accesses.

Ion Gel Gate Dielectrics for Polymer Non-volatile Transistor Memories (이온젤 전해질 절연체 기반 고분자 비휘발성 메모리 트랜지스터)

  • Cho, Boeun;Kang, Moon Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.759-763
    • /
    • 2016
  • We demonstrate the utilization of ion gel gate dielectrics for operating non-volatile transistor memory devices based on polymer semiconductor thin films. The gating process in typical electrolyte-gated polymer transistors occurs upon the penetration and escape of ionic components into the active channel layer, which dopes and dedopes the polymer film, respectively. Therefore, by controlling doping and dedoping processes, electrical current signals through the polymer film can be memorized and erased over a period of time, which constitutes the transistor-type memory devices. It was found that increasing the thickness of polymer films can enhance the memory performance of device including (i) the current signal ratio between its memorized state and erased state and (ii) the retention time of the signal.

Lifetime Extension Method for Non-Volatile Memory based Deep Learning System by analyzing Data Write Pattern (데이터 쓰기 패턴 분석을 통한 비휘발성 메모리 기반 딥러닝 시스템의 수명 연장 기법)

  • Choi, Juhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Modern computer systems usually have special hardware for operations used in deep learning workload even edge computing environment. Non-volatile memories (NVMs) have been considered for alternative memory storage because they consume little static energy and occupy small area. However, there is a problem for NVMs to be directly adopted. An NVM cell has limited write endurance, so that the lifetime of NVM-based memory system is much shorter than that of conventional memory system. To overcome this problem for the deep learning system, this paper proposes a novel method to extend the lifetime based on the analysis of the deep learning workloads. If an incoming block has more than a predefined number of frequently used values, the cacheline is defined as write friendly block. During the victim selection, the cacheline has lower possibility to be chosen as victim. The experimental results show that the lifetime is increased by about 50% and energy consumption is decreased by 3% with a little performance hurt.

Accelerating Memory Access with Address Phase Skipping in LPDDR2-NVM

  • Park, Jaehyun;Shin, Donghwa;Chang, Naehyuck;Lee, Hyung Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Low power double data rate 2 non-volatile memory (LPDDR2-NVM) has been deemed the standard interface to connect non-volatile memory devices such as phase-change memory (PCM) directly to the main memory bus. However, most of the previous literature does not consider or overlook this standard interface. In this paper, we propose address phase skipping by reforming the way of interfacing with LPDDR2-NVM. To verify effectiveness and functionality, we also develop a system-level prototype that includes our customized LPDDR2-NVM controller and commercial PCM devices. Extensive simulations and measurements demonstrate up to a 3.6% memory access time reduction for commercial PCM devices and a 31.7% reduction with optimistic parameters of the PCM research prototypes in industries.

A Study of System Log and Volatile Information Collection for Computer Forensics (컴퓨터 포렌식스 지원을 위한 시스템 로그 및 휘발성 정보 수집에 관한 연구)

  • Gho, Eun-Ju;Oh, Se-Min;Jang, Eun-Gyeom;Lee, Jong-Sub;Choi, Yong-Rak
    • The Journal of Information Technology
    • /
    • v.10 no.4
    • /
    • pp.41-56
    • /
    • 2007
  • In Digital Computing Environment, volatile information such as register, cache memory, and network information are hard to make certain of a real-time collection because such volatile information are easily modified or disappeared. Thus, a collection of volatile information is one of important step for computer forensics system on ubiquitous computing. In this paper, we propose a volatile information collection module, which collects variable volatile information of server system based on memory mapping in real-time.

  • PDF

Forgetting based File Cache Management Scheme for Non-Volatile Memory (데이터 망각을 활용한 비휘발성 메모리 기반 파일 캐시 관리 기법)

  • Kang, Dongwoo;Choi, Jongmoo
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.972-978
    • /
    • 2015
  • Non-volatile memory (NVM) supports both byte addressability and non-volatility. These characteristics make it feasible for NVM to be employed at any layer of the memory hierarchy such as cache, memory and disk. An interesting characteristic of NVM is that, even though it supports non-volatility, its retention capability is limited. Furthermore NVM has tradeoff between its retention capability and write latency. In this paper, we propose a novel NVM-based file cache management scheme that makes use of the limited retention capability to improve the cache performance. Experimental results with real-workloads show that our scheme can reduce access latency by up to 31% (24.4% average) compared with the conventional LRU based cache management scheme.

Effect of Physicochemical Properties of Solvents on Microstructure of Conducting Polymer Film for Non-Volatile Polymer Memory

  • Paik, Un-Gyu;Lee, Sang-Kyu;Park, Jea-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • The effect of physicochemical properties of solvents on the microstructure of polyvinyl carbazole (PVK) film for non-volatile polymer memory was investigated. For the solubilization of PVK molecules and the preparation of PVK films, four solvents with different physicochemical properties of the Hildebrand solubility parameter and vapor pressure were considered: chloroform, tetrahydrofuran (THF), 1,1,2,2-tetrachloroethane (TCE), and N,N-dimehtylformamide (DMF). The solubility of PVK molecules in the solvents was observed by ultravioletvisible spectroscopy. PVK molecules were observed to be more soluble in chloroform, with a low Hildebrand solubility parameter, than solvents with higher values. The aggregated size and micro-/nano-topographical properties of PVK films were characterized using optical and atomic force microscopes. The PVK film cast from chloroform exhibited enhanced surface roughness compared to that from TCE and DMF. It was also confirmed that the microstructure of PVK film has an effect on the performance of non-volatile polymer memory.

Performance Evaluation and Analysis of NVMe SSD (Non-volatile Memory Express 인터페이스 기반 저장장치의 성능 평가 및 분석)

  • Son, Yongseok;Yeom, Heon Young;Han, Hyuck
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.428-433
    • /
    • 2017
  • Recently, the demand for high performance non-volatile memory storage devices that can replace existing hard disks has been increasing in environments requiring high performance computing such as data-centers and social network services. The performance of such non-volatile memory can greatly depend on the interface between the host and the storage device. With the evolution of storage interfaces, the non-volatile memory express (NVMe) interface has emerged, which can replace serial attached SCSI and serial ATA (SAS/SATA) interfaces based on existing hard disks. The NVMe interface has a higher level of scalability and provides lower latency than traditional interfaces. In this paper, an evaluation and analysis are conducted of the performance of NVMe storage devices through various workloads. We also compare and evaluate the cost efficiency of NVMe SSD and SATA SSD.