• Title/Summary/Keyword: Visual Dynamics Model

Search Result 64, Processing Time 0.04 seconds

Development and Application of Korean Dummy Models (한국인 인체 모델의 개발과 적용)

  • Lee, Sang-Cheol;Son, Gwon;Kim, Seong-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • Human dummies are essential tools in the development of such products as vehicle have been actively used not only in reach and view field tests. but also in impact perception evaluations. This study attempted to obtain geometric and dynamic model body segments from Korean anthropometric data. The investigation focused on the de both human and dummy for the geometric and inertial properties. The dynamic modeli being suggested is based on rigid body dynamics using fifteen individual body segments by joins. The segments are connected at the locations representing the physical joint body so that each segment has its mass and moment of inertia. For visual three-dimensional graphic was used for easier implementation of the dumn applications. For applications, proposed Korean dummies Were used in dynamic crash and driver's view and reach test modules were developed in virtual environment.

Experimental Planning for Realistic Force Feedback in a Bicycle Simulator

  • Hun, Yang-Gi;Soo, Kwon-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.117.5-117
    • /
    • 2001
  • This paper presents the key idea of handlebar reaction force and pedal resistance force generation in creating life-like feeling in KAIST bicycle simulator. Also, it provides methods to evaluate its reality level with given reaction force profile. In KAIST bicycle simulator, the pedal resistance force and the handlebar reaction force are calculated using the bicycle dynamic model. With the information handlebar angle, rider´s pedaling torque and road profile transmitted from the handlebar system, the pedal system and the visual part, the bicycle dynamics engine calculates the handlebar reaction force and the pedal velocity. The handlebar system and the pedal resistance system generate reaction force and resistance force transmitted from dynamics engine. However to make more realistic riding feeling ...

  • PDF

Development of Model for Video Media Music Therapy Program Using Body Expression -Based on Color, Harmony and Dynamics- (신체표현을 활용한 영상미디어 음악치료프로그램모형 개발 -색깔과 화음 및 다이나믹을 중심으로-)

  • Shin, Yeon-Sook;Cho, Sung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.429-437
    • /
    • 2012
  • The purpose of this research aims to find the changes resulted from the collaboration of colors, harmonies, and dynamics within a music. Through this research model, psychologically change of color and harmony, dynamics have explored to collect the resources for the research of the visual media music therapy program. In video media, music is utilized as non-verbal communication in many areas. The connection between melodies and colors, especially, is one of the most effective instrument to reduce the gap between realities and imagination, thus leading emotional inspiration. Gim's(Guided Imagery and Music) model of musical therapy strives to understand inner-side of human nature, and gives an insight into self-understanding. We would like to promote active, and physical model of musical therapy aside from passive existing mode, and apply it as the base resource for our ever-changing society, and teenage education.

A Combined Pharmacophore-Based Virtual Screening, Docking Study and Molecular Dynamics (MD) Simulation Approach to Identify Inhibitors with Novel Scaffolds for Myeloid cell leukemia (Mcl-1)

  • Bao, Guang-Kai;Zhou, Lu;Wang, Tai-Jin;He, Lu-Fen;Liu, Tao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2097-2108
    • /
    • 2014
  • Chemical feature based quantitative pharmacophore models were generated using the HypoGen module implemented in DS2.5. The best hypothesis, Hypo1, which was characterized by the highest correlation coefficient (0.96), the highest cost difference (61.60) and the lowest RMSD (0.74), consisted of one hydrogen bond acceptor, one hydrogen bond donor, one hydrophobic and one ring aromatic. The reliability of Hypo1 was validated on the basis of cost analysis, test set, Fischer's randomization method and GH test method. The validated Hypo1 was used as a 3D search query to identify novel inhibitors. The screened molecules were further refined by employing ADMET, docking studies and visual inspection. Three compounds with novel scaffolds were selected as the most promising candidates for the designing of Mcl-1 antagonists. Finally, a 10 ns molecular dynamics simulation was carried out on the complex of receptor and the retrieved ligand to demonstrate that the binding mode was stable during the MD simulation.

Real-time Fluid Animation using Particle Dynamics Simulation and Pre-integrated Volume Rendering (입자 동역학 시뮬레이션과 선적분 볼륨 렌더링을 이용한 실시간 유체 애니메이션)

  • Lee Jeongjin;Kang Moon Koo;Kim Dongho;Shin Yeong Gil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.1
    • /
    • pp.29-38
    • /
    • 2005
  • The fluid animation procedure consists of physical simulation and visual rendering. In the physical simulation of fluids, the most frequently used practices are the numerical simulation of fluid particles using particle dynamics equations and the continuum analysis of flow via Wavier-Stokes equation. Particle dynamics method is fast in calculation, but the resulting fluid motion is conditionally unrealistic The method using Wavier-Stokes equation, on the contrary, yields lifelike fluid motion when properly conditioned, yet the complexity of calculation restrains this method from being used in real-time applications. Global illumination is generally successful in producing premium-Duality rendered images, but is also excessively slow for real-time applications. In this paper, we propose a rapid fluid animation method incorporating enhanced particle dynamics simulation method and pre-integrated volume rendering technique. The particle dynamics simulation of fluid flow was conducted in real-time using Lennard-Jones model, and the computation efficiency was enhanced such that a small number of particles can represent a significant volume. For real-time rendering, pre-integrated volume rendering method was used so that fewer slices than ever can construct seamless inter-laminar shades. The proposed method could successfully simulate and render the fluid motion in real time at an acceptable speed and visual quality.

Topological Localization of Mobile Robots in Real Indoor Environment (실제 실내 환경에서 이동로봇의 위상학적 위치 추정)

  • Park, Young-Bin;Suh, Il-Hong;Choi, Byung-Uk
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • One of the main problems of topological localization in a real indoor environment is variations in the environment caused by dynamic objects and changes in illumination. Another problem arises from the sense of topological localization itself. Thus, a robot must be able to recognize observations at slightly different positions and angles within a certain topological location as identical in terms of topological localization. In this paper, a possible solution to these problems is addressed in the domain of global topological localization for mobile robots, in which environments are represented by their visual appearance. Our approach is formulated on the basis of a probabilistic model called the Bayes filter. Here, marginalization of dynamics in the environment, marginalization of viewpoint changes in a topological location, and fusion of multiple visual features are employed to measure observations reliably, and action-based view transition model and action-associated topological map are used to predict the next state. We performed experiments to demonstrate the validity of our proposed approach among several standard approaches in the field of topological localization. The results clearly demonstrated the value of our approach.

  • PDF

Modeling and Simulation of the Cardiovascular System using DEVS formalism (DEVS 형식론을 적용한 심혈관 시스템의 모델링 및 시뮬레이션)

  • Cho, Y.J.;Son, K.S.;Nam, K.G.;Lee, Y.W.;Kim, K.N.;Choi, B.C.;Jun, K.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.74-79
    • /
    • 1996
  • This paper describes a methodology for the development of models of discrete event system(DES). The methodology is based on transformation of continuous state space into discrete one to homomorphically represent dynamics of continuous processes in discrete events. This paper proposes a formal structure which can couple DES models within a framework. The structure employs the DEVS formalism for the DES models. The proposed formal structure has been applied to develop a DEVS model for the human cardiovascular system. For this, the cardiac cycle is partitioned into a set of phases based on events identified through VisSim simulation in the CS of the electrical analog model. VisSim is the simulation tool of visual environment for developing continuous, discrete, and hybrid system models and performing dynamic simulation. For each phase, a CS of the electrical analog model for the cardiovascular system has been simulated by VisSim 2.0. To validate this model, first develop the DEVS model, then simulate the model in the DEVSIM++ environment. It has same simulation results for the data obtained from the CS simulation using VisSim. The comparison shows that the DEVS model represents dynamics of the human heart system at each phase of cardiac cycle.

  • PDF

Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters

  • Yi, Kangwoo;Moon, Yong-Jae;Lim, Daye;Park, Eunsu;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2021
  • In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts "Yes" or "No" for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values.

  • PDF

Development of Off-line Simulator for Industrial Robots with Auto-teaching (자동교시기능을 갖는 산업용 로봇의 3차원 오프라인 시뮬레이터 개발)

  • 정동연;한성현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.80-88
    • /
    • 2003
  • We propose a new technique to design an unmaned integrating control system based-on Windows XP version off-Line Programming System which can simulate a dynamic model of robot manipulator in three dimensions graphics space in this paper. The robot with 4 and 6 axes modeled SM5 and AM1 respectively were adopted as an objective model. Forward kinematics, inverse kinematics and robot dynamics modeling were included in the developed off-line program. The interface between users and the off$.$line programming system in the Windows XP's graphic user interface environment was also studied. The developing language is Microsoft Visual C++. Graphic libraries, OpenGL, by silicon Graphics, Inc. were utilized for three dimensions graphics.

Virtual Prototyping Simulation for a Passenger Vehicle

  • Kwon Son;Park, Kyung-Hyun;Eom, Sung-Sook
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.448-458
    • /
    • 2001
  • The primary goal of virtual prototyping is to eliminate the need for fabricating physical prototypes, and to reduce cost and time for developing new products. A virtual prototyping seeks to create a virtual environment where the development of a new model can be flexible as well as rapid, and experiments can be carried out effectively concerning kinematics, dynamics, and control aspects of the model. This paper addresses the virtual environment used for virtual prototyping of a passenger vehicle. It has been developed using the dVISE environment that provides such useful features as actions, events, sounds, and light features. A vehicle model including features, and behaviors is constructed by employing an object-oriented paradigm and contains detailed information about a real-size vehicle. The human model is also implemented not only for visual and reach evaluations of the developed vehicle model, but also for behavioral visualization during a crash test. For the real time driving simulation, a neural network model is incorporated into the virtual environment. The cases of passing bumps with a vehicle are discussed in order to demonstrate the applicability of a set of developed models.

  • PDF