• Title/Summary/Keyword: Virulence genes

Search Result 305, Processing Time 0.035 seconds

Identification of Virulence Factors in Vibrio vulnificus by Comparative Transcriptomic Analyses between Clinical and Environmental Isolates Using cDNA Microarray

  • Kim, In-Hwang;Kim, Byung-Soo;Lee, Kyung-Shin;Kim, Ik-Joong;Son, Jee-Soo;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1228-1235
    • /
    • 2011
  • We compared the gene expression among four clinical and five environmental V. vulnificus isolates, using a cDNA microarray containing 131 genes possibly associated with pathogenicity, transport, signal transduction, and gene regulations in the pathogen. cDNAs from total RNAs of these isolates were hybridized into the cDNA microarray using the cDNA of the wild-type strain MO6-24/O as a reference. We focused on selecting differentially expressed (DE) genes between clinical and environmental isolates using a modified t-statistic. We could detect two statistically significant DE genes between virulent isolates and less-virulent isolates with a marginal statistical significance (p-value of 0.008). These were genes putatively encoding pilin and adenlyate cylase. Real time-PCR confirmed that these two selected genes transcribed in significantly higher levels in virulent isolates than in less-virulent isolates. Mutants with lesions in the gene encoding pilin showed significantly higher $LD_{50}$ values than that of wild type.

Food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of Vibrio parahaemolyticus in Korea from 2003 to 2016: a review

  • Park, Kunbawui;Mok, Jong Soo;Kwon, Ji Young;Ryu, A Ra;Kim, Song Hee;Lee, Hee Jung
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.2
    • /
    • pp.3.1-3.10
    • /
    • 2018
  • Background: Vibrio parahaemolyticus is one of the most common causes of seafood-borne illnesses in Korea, either directly or indirectly, by consuming infected seafood. Many studies have demonstrated the antibiotic susceptibility profile of V. parahaemolyticus. This strain has developed multiple antibiotic resistance, which has raised serious public health and economic concerns. This article reviews the food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of V. parahaemolyticus in Korea during 2003-2016. Main body: V. parahaemolyticus infections appeared to be seasonally dependent, because 69.7% of patient infections occurred in both August and September during 2003-2016. In addition, the occurrence of V. parahaemolyticus in marine environments varies seasonally but is particularly high in July, August, and September. V. parahaemolyticus isolated from aquaculture sources on the Korean coast varied in association with virulence genes, some did not possess either the tdh (thermostable direct hemolysin) or trh (tdh-related hemolysin) genes, and a few were positive for only the trh gene or both genes. The high percentage of ampicillin resistance against V. parahaemolyticus in the aquatic environment suggests that ampicillin cannot be used to effectively treat infections caused by this organism. Short conclusion: This study shows that the observed high percentage of multiple antibiotic resistance to V. parahaemolyticus is due to conventionally used antibiotics. Therefore, monitoring the antimicrobial resistance patterns at a national level and other solutions are needed to control aquaculture infections, ensure seafood safety, and avoid threats to public health caused by massive misuse of antibiotics.

Regulation of gene expression by histone-like proteins in bacteria (박테리아의 히스톤 유사 단백질에 의한 유전자 발현 조절)

  • Park, Shinae;Lee, Jung-Shin
    • Korean Journal of Microbiology
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A prokaryotic cell has various histone-like proteins also known as nucleoid-associated proteins (NAPs). These proteins bind AT-rich sequence at DNA, which induce DNA wrapping, bending, and bridging, and subsequently regulate the gene expression in bacteria. Because NAPs function in transcriptional silencing of virulence genes, it is important to study their roles in gene silencing and specific mechanisms of these proteins. In this review, we discussed two well-known NAPs, H-NS, and HU, and summarized their roles for gene expression in Escherichia coli and Salmonella Typhimurium. Through the oligomerization and filamentation of H-NS, it represses the expression of virulence genes in human pathogenic bacteria, such as Salmonella Typhimurium, and it works with other NAPs positively or negatively. Recently, H-NS also regulates typhoid toxin expression, which causes typhoid fever and systemic disease in human. Additionally, HU regulates the expression of genes related to both virulence and physiology of Salmonella. Therefore, we suggest that NAPs like H-NS and HU are crucial factors to reveal the molecular mechanisms of virulence gene expression in bacteria.

Prevalence and Characterization of Virulence Genes in Escherichia coli Isolated from Diarrheic Piglets in Korea

  • Kim, Sung Jae;Jung, Woo Kyung;Hong, Joonbae;Yang, Soo-Jin;Park, Yong Ho;Park, Kun Taek
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.271-278
    • /
    • 2020
  • Enterotoxigenic Escherichia coli is one of the major causative infectious agents of diarrhea in newborn and post-weaning pigs and leads to a large economic loss worldwide. However, there is limited information on the distribution and characterization of virulence genes in E. coli isolated from diarrheic piglets, which also applies to the current status of pig farms in Korea. To investigate the prevalence and characterization of virulence genes in E. coli related to diarrhea in piglets, the rectal swab samples of diarrheic piglets (aged 2 d to 6 w) were collected from 163 farms between 2013 and 2016. Five to 10 individual swab samples from the same farm were pooled and cultured on MacConkey agar plates, and E. coli were identified using the API 32E system. Three sets of multiplex PCRs were used to detect 13 E. coli virulence genes. As a result, a total of 172 E. coli isolates encoding one or more of the virulence genes were identified. Among them, the prevalence of individual virulence gene was as follows, (1) fimbrial adhesins (43.0%): F4 (16.9%), F5 (4.1%), F6 (1.7%), F18 (21.5%), and F41 (3.5%); (2) toxins (90.1%): LT (19.2%), STa (20.9%), STb (25.6%), Stx2e (15.1%), EAST1 (48.3%); and (3) non-fimbrial adhesin (19.6%): EAE (14.0%), AIDA-1 (11.6%) and PAA (8.7%), respectively. Taken together, various pathotypes and virotypes of E. coli were identified in diarrheic piglets. These results suggest a broad array of virulence genes is associated with coliform diarrhea in piglets in Korea.

Prevalence of virulence-associated genes and antimicrobial resistance of Campylobacter jejuni from ducks in Gyeongnam Province, Korea

  • Yang, Jung-Wong;Kim, Sang-Hyun;Lee, Woo-Won;Kim, Yong-Hwan
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.2
    • /
    • pp.85-96
    • /
    • 2014
  • Total 99 strains of Campylobacter spp. were isolated from 117 cases of duck's fecal samples. Among 99 strains of Campylobacter spp. isolates, 93 strains (93.9%) were C. jejuni and 6 strains (6.1%) were C. coli. Prevalence of virulence and GBS associated genes of 72 C. jejuni isolates was determined by m-PCR. Among the 10 kinds of virulence associated genes, cadF, dnaJ, flaA and ceuE genes were detected in all of C. jejuni isolates from ducks, racR, pldA, iamA, ciaB, virB11 and docC genes were 87.5%, 84.7%, 77.8%, 48.6%, 13.9% and 11.1%, respectively. Antimicrobial susceptibility test was performed on 72 C. jejuni isolates. The rate of resistance were 62.5% for oxytetracycline, 55.6% for kanamycin, 54.2% for enrofloxacin, 50% for ciprofloxacin, 37.5% for tetracycline and nalidixic acid, 18.1% for ampicillin, 15.3% for streptomycin, and 6.9% for ofloxacin. All isolates were susceptible to erythromycin. The adherence (intracellular and extracellular bacteria) abilities of the 20 isolates to INT-407 cells were between $4.21{\pm}1.27{\times}10^4$ CFU/well and $1.053{\pm}0.451{\times}10^6$ CFU/well from the isolates of cj-55 and cj-52, respectively, and that can be expressed as 0.1033% to 5.2655% to the infecting inoculum. The invasion (intracellular bacteria) abilities of the 20 isolates to INT-407 were between $1.00{\pm}1.73{\times}10^3$ CFU/well and $8.47{\pm}5.16{\times}10^4$ CFU/well from the isolates of cj-13 and cj-47, respectively, and that can be expressed as 0.0050% to 0.4235% to the infecting inoculums. The average CFU/well of 20 campylobacters isolated from ducks for adherence to and invasion were $2.646{\pm}2.886{\times}10^5$ and $3.03{\pm}2.7{\times}10^4$ respectively, and that was $1.3230{\pm}1.2139%$ and $0.1516{\pm}0.1343%$ of the starting viable inoculum. There was considerable correlation ($R^2$=0.627) between the adherence and invasion ability of C. jejuni isolates for INT-407 cell.

Screening of Genes Expressed In Vivo During Interaction Between Chicken and Campylobacter jejuni

  • Hu, Yuanqing;Huang, Jinlin;Jiao, Xin-An
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • Chicken are considered as the most important source of human infection by Campylobacter jejuni, which primarily arises from contaminated poultry meats. However, the genes expressed in vivo of the interaction between chicken and C. jejuni have not been screened. In this regard, in vivo-induced antigen technology (IVIAT) was applied to identify expressed genes in vivo during interaction between chicken and C. jejuni, a prevalent foodborne pathogen worldwide. Chicken sera were obtained by inoculating C. jejuni NCTC 11168 into Leghorn chickens through oral and intramuscular administration. Pooled chicken sera, adsorbed against in vitro-grown cultures of C. jejuni, were used to screen the inducible expression library of genomic proteins from sequenced C. jejuni NCTC 11168. Finally, 28 unique genes expressed in vivo were successfully identified after secondary and tertiary screenings with IVIAT. The genes were implicated in metabolism, molecular biosynthesis, genetic information processing, transport, regulation and other processes, in addition to Cj0092, with unknown function. Several potential virulence-associated genes were found to be expressed in vivo, including chuA, flgS, cheA, rplA, and Cj0190c. We selected four genes with different functions to compare their expression levels in vivo and in vitro using real-time RT-PCR. The results indicated that these selected genes were significantly upregulated in vivo but not in vitro. In short, the expressed genes in vivo may act as potential virulence-associated genes, the protein encoded by which may be meaningful vaccine candidate antigens for campylobacteriosis. IVIAT provides an important and efficient strategy for understanding the interaction mechanisms between Campylobacter and hosts.

IscR Modulates Catalase A (KatA) Activity, Peroxide Resistance, and Full Virulence of Pseudomonas aeruginosa PA14

  • Kim, Seol-Hee;Lee, Bo-Young;Lau, Gee W.;Cho, You-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1520-1526
    • /
    • 2009
  • We have identified the iscR (PA3815) gene encoding an iron-sulfur cluster assembly regulator homolog as one of the genes required for peroxide resistance in Pseudomonas aeruginosa PA14. Here, we present the phenotypic characterization of an iscR deletion mutant in terms of KatA expression, stress responses, and virulence. The iscR null mutant exhibited reduced KatA activity at the posttranslational level, hypersensitivity to hydrogen peroxide, and virulence-attenuation in Drosophila melanogaster and mouse peritonitis models. These phenotypes were fully restored by multicopy-based expression of katA. These results suggest that the requirement of IscR in P. aeruginosa is related to the proper activity of KatA, which is crucial for peroxide resistance and full virulence of this bacterium.

Upregulated expression of the cDNA fragment possibly related to the virulence of Acanthamoeba culbertsoni

  • Im, Kyung-Il;Park, Kwang-Min;Yong, Tai-Soon;Hong, Yong-Pyo;Kim, Tae-Eun
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.4
    • /
    • pp.257-263
    • /
    • 1999
  • Identification of the genes responsible for the recovery of virulence in brain-passaged Acanthamoeba culbertsoni was attempted via mRNA differential display polymerase chain reaction (mRNA DD-PCR) analysis. In order to identify the regulatory changes in transcription of the virulence related genes by the brain passages, mRNA DD-PCR was performed which enabled the display of differentially transcribed mRNAs after the brain passages. Through mRNA DD-PCR analysis. 96 brain-passaged amoeba specific amplicons were observed and were screened to identify the amplicons that failed to amplify in the non-brain-passaged amoeba mRNAs. Out of the 96 brain-passaged amoeba specific amplicons, 12 turned out to be amplified only from the brain-passaged amoeba mRNAs by DNA slot blot hybridization. The clone, A289C, amplified with an arbitrary primer of UBC #289 and the oligo dT$_{11}$-C primer, revealed the highest homology (49.8%) to the amino acid sequences of UPD-galactose lipid transferase of Erwinia amylovora, which is known to act as an important virulence factor. The deduced amino acid sequences of an insert DNA in clone A289C were also revealed to be similar to cpsD, which is the essential gene for the expression of type III capsule in group B streptococcus. Upregulated expression of clone A289C was verified by RNA slot blot hybridization. Similar hydrophobicity values were also observed between A289C (at residues 47-66) and the AmsG gene of E. amylovora (at residues 286-305: transmembrane domains). This result suggested that the insert of clone A289C might play the same function as galactosyl transferase controlled by the AmsG gene in E. amylovora.a.

  • PDF

Comparative Genomics Approaches to Understanding Virulence and Antimicrobial Resistance of Salmonella Typhimurium ST1539 Isolated from a Poultry Slaughterhouse in Korea

  • Kim, Eunsuk;Park, Soyeon;Cho, Seongbeom;Hahn, Tae-Wook;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.962-972
    • /
    • 2019
  • Non-typhoidal Salmonella (NTS) is one of the most frequent causes of bacterial foodborne illnesses. Considering that the main reservoir of NTS is the intestinal tract of livestock, foods of animal origin are regarded as the main vehicles of Salmonella infection. In particular, poultry colonized with Salmonella Typhimurium (S. Typhimurium), a dominant serotype responsible for human infections, do not exhibit overt signs and symptoms, thereby posing a potential health risk to humans. In this study, comparative genomics approaches were applied to two S. Typhimurium strains, ST1539 and ST1120, isolated from a duck slaughterhouse and a pig farm, respectively, to characterize their virulence and antimicrobial resistance-associated genomic determinants. ST1539 containing a chromosome (4,905,039 bp; 4,403 CDSs) and a plasmid (93,876 bp; 96 CDSs) was phylogenetically distinct from other S. Typhimurium strains such as ST1120 and LT2. Compared to the ST1120 genome (previously deposited in GenBank; CP021909.1 and CP021910.1), ST1539 possesses more virulence determinants, including ST64B prophage, plasmid spv operon encoding virulence factors, genes encoding SseJ effector, Rck invasin, and biofilm-forming factors (bcf operon and pefAB). In accordance with the in silico prediction, ST1539 exhibited higher cytotoxicity against epithelial cells, better survival inside macrophage cells, and faster mice-killing activity than ST1120. However, ST1539 showed less resistance against antibiotics than ST1120, which may be attributed to the multiple resistanceassociated genes in the ST1120 chromosome. The accumulation of comparative genomics data on S. Typhimurium isolates from livestock would enrich our understanding of strategies Salmonella employs to adapt to diverse host animals.

High Prevalence of Listeria monocytogenes in Smoked Duck: Antibiotic and Heat Resistance, Virulence, and Genetics of the Isolates

  • Park, Eunyoung;Ha, Jimyeong;Oh, Hyemin;Kim, Sejeong;Choi, Yukyung;Lee, Yewon;Kim, Yujin;Seo, Yeongeun;Kang, Joohyun;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.41 no.2
    • /
    • pp.324-334
    • /
    • 2021
  • This study aimed at determining the genetic and virulence characteristics of the Listeria monocytogenes from smoked ducks. L. monocytogenes was isolated by plating, and the isolated colonies were identified by PCR. All the obtained seven L. monocytogenes isolates possessed the virulence genes (inlA, inlB, plcB, and hlyA) and a 385 bp actA amplicon. The L. monocytogenes isolates (SMFM2018 SD 1-1, SMFM 2018 SD 4-1, SMFM 2018 SD 4-2, SMFM 2018 SD 5-2, SMFM 2018 SD 5-3, SMFM 2018 SD 6-2, and SMFM 2018 SD 7-1) were inoculated in tryptic soy broth (TSB) containing 0.6% yeast extract at 60℃, followed by cell counting on tryptic soy agar (TSA) containing 0.6% yeast extract at 0, 2, 5, 8, and 10 min. We identified five heat resistant isolates compared to the standard strain (L. monocytogenes ATCC13932), among which three exhibited the serotype 1/2b and D-values of 5.41, 6.48, and 6.71, respectively at 60℃. The optical densities of the cultures were regulated to a 0.5 McFarland standard to assess resistance against nine antibiotics after an incubation at 30℃ for 24 h. All isolates were penicillin G resistant, possessing the virulence genes (inlA, inlB, plcB, and hlyA) and the 385-bp actA amplicon, moreover, three isolates showed clindamycin resistance. In conclusion, this study allowed us to characterize L. monocytogenes isolates from smoked ducks, exhibiting clindamycin and penicillin G resistance, along with the 385-bp actA amplicon, representing higher invasion efficiency than the 268-bp actA, and the higher heat resistance serotype 1/2b.