Browse > Article
http://dx.doi.org/10.4014/jmb.1308.08092

Screening of Genes Expressed In Vivo During Interaction Between Chicken and Campylobacter jejuni  

Hu, Yuanqing (Jiangsu Key Laboratory of Zoonosis, Yangzhou University)
Huang, Jinlin (Jiangsu Key Laboratory of Zoonosis, Yangzhou University)
Jiao, Xin-An (Jiangsu Key Laboratory of Zoonosis, Yangzhou University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.2, 2014 , pp. 217-224 More about this Journal
Abstract
Chicken are considered as the most important source of human infection by Campylobacter jejuni, which primarily arises from contaminated poultry meats. However, the genes expressed in vivo of the interaction between chicken and C. jejuni have not been screened. In this regard, in vivo-induced antigen technology (IVIAT) was applied to identify expressed genes in vivo during interaction between chicken and C. jejuni, a prevalent foodborne pathogen worldwide. Chicken sera were obtained by inoculating C. jejuni NCTC 11168 into Leghorn chickens through oral and intramuscular administration. Pooled chicken sera, adsorbed against in vitro-grown cultures of C. jejuni, were used to screen the inducible expression library of genomic proteins from sequenced C. jejuni NCTC 11168. Finally, 28 unique genes expressed in vivo were successfully identified after secondary and tertiary screenings with IVIAT. The genes were implicated in metabolism, molecular biosynthesis, genetic information processing, transport, regulation and other processes, in addition to Cj0092, with unknown function. Several potential virulence-associated genes were found to be expressed in vivo, including chuA, flgS, cheA, rplA, and Cj0190c. We selected four genes with different functions to compare their expression levels in vivo and in vitro using real-time RT-PCR. The results indicated that these selected genes were significantly upregulated in vivo but not in vitro. In short, the expressed genes in vivo may act as potential virulence-associated genes, the protein encoded by which may be meaningful vaccine candidate antigens for campylobacteriosis. IVIAT provides an important and efficient strategy for understanding the interaction mechanisms between Campylobacter and hosts.
Keywords
Campylobacter jejuni; in vivo-induced antigen technology (IVIAT); host-pathogen interaction; chicken;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hu Y, Cong Y, Li S, Rao X, Wang G, Hu F. 2009. Identification of in vivo induced protein antigens of Salmonella enterica serovar Typhi during human infection. Sci. China C Life Sci. 52: 942-948.   DOI   ScienceOn
2 Hu Y, Shang Y, Huang J, Wang Y, Ren F, Jiao Y, et al. 2013. A novel immunoproteomics method for identifying in vivoinduced Campylobacter jejuni antigens using pre-adsorbed sera from infected patients. BBA Gen. Subjects 1830: 5229- 5235.   DOI   ScienceOn
3 Ibrahim GF, Fleet GH, Lyons MJ, Walker RA. 1985. Method for the isolation of highly purified Salmonella flagellins. J. Clin. Microbiol. 22: 1040-1044.
4 Ang CW, Dijkstra JR, de Klerk MA, Endtz HP, van Doorn PA, Jacobs BC, et al. 2010. Host factors determine anti-GM1 response following oral challenge of chickens with Guillain- Barre syndrome derived Campylobacter jejuni strain GB11. PLoS One 5: e9820.   DOI   ScienceOn
5 Barrero-Tobon AM, Hendrixson DR. 2012. Identification and analysis of flagellar coexpressed determinants (Feds) of Campylobacter jejuni involved in colonization. Mol. Microbiol. 84: 352-369.   DOI   ScienceOn
6 Dasti JI, Tareen AM, Lugert R, Zautner AE, Gross U. 2010. Campylobacter jejuni: a brief overview on pathogenicityassociated factors and disease-mediating mechanisms. Int. J. Med. Microbiol. 300: 205-211.   DOI   ScienceOn
7 Day CJ, Tiralongo J, Hartnell RD, Logue CA, Wilson JC, von Itzstein M, Korolik V. 2009. Differential carbohydrate recognition by Campylobacter jejuni strain 11168: influences of temperature and growth conditions. PLoS One 4: e4927.   DOI   ScienceOn
8 Deb DK, Dahiya P, Srivastava KK, Srivastava R, Srivastava BS. 2002. Selective identification of new therapeutic targets of Mycobacterium tuberculosis by IVIAT approach. Tuberculosis 82: 175-182.   DOI   ScienceOn
9 French N, Barrigas M, Brown P, Ribiero P, Williams N, Leatherbarrow H, et al. 2005. Spatial epidemiology and natural population structure of Campylobacter jejuni colonizing a farmland ecosystem. Environ. Microbiol. 7: 1116-1126.   DOI   ScienceOn
10 Gaasbeek EJ, van der Wal FJ, van Putten JP, de Boer P, van der Graaf-van Bloois L, de Boer AG, et al. 2009. Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni. J. Bacteriol. 191: 3785-3793.   DOI   ScienceOn
11 Vucic S, Kiernan MC, Cornblath DR. 2009. Guillain-Barre syndrome: an update. J. Clin. Neurosci. 16: 733-741.   DOI   ScienceOn
12 Woodall CA, Jones MA, Barrow PA, Hinds J, Marsden GL, Kelly DJ, et al. 2005. Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect. Immun. 73: 5278-5285.   DOI   ScienceOn
13 Wosten MM, Wagenaar JA, van Putten JP. 2004. The FlgS/ FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J. Biol. Chem. 279: 16214-16222.   DOI   ScienceOn
14 Xie L, Zhang S, Yao W. 2011. Construction of cheA insertion mutant of Campylobacter jejuni and the effect of its adhesion on mice jejunum. Acta Microbiologica Sinica 51: 208-213.
15 Young K T, D av is LM, D irita VJ. 2007. Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol. 5: 665-679.   DOI   ScienceOn
16 Zhang H, Fan H, Lu C. 2010. Identification of a novel virulence-related gene in Streptococcus suis type 2 strains. Curr. Microbiol. 61: 494-499.   DOI
17 Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M. 2008. Campylobacter jejuni-mediated disease pathogenesis: an update. Trans. R. Soc. Trop. Med. Hyg. 102: 123-129.   DOI   ScienceOn
18 Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, et al. 2000. The genome sequence of the foodborne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665-668.   DOI   ScienceOn
19 Pearson B, Pin C, Wright J, I'Anson K, Humphrey T, Wells J. 2003. Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett. 554: 224-230.   DOI   ScienceOn
20 Poli VFS, Thorsen L, Olesen I, Wik MT, Jespersen L. 2012. Differentiation of the virulence potential of Campylobacter jejuni strains by use of gene transcription analysis and a Caco-2 assay. Int. J. Food Microbiol. 155: 60-68.   DOI   ScienceOn
21 Rollins SM, Peppercorn A, Hang L, Hillman JD, Calderwood SB, Handfield M, Ryan ET. 2005. In vivo induced antigen technology (IVIAT). Cell Microbiol. 7: 1-9.
22 Rollins SM, Peppercorn A, Young JS, Drysdale M, Baresch A, Bikowski MV, et al. 2008. Application of in vivo induced antigen technology (IVIAT) to Bacillus anthracis. PLoS One 3: e1824.   DOI   ScienceOn
23 Salim KY, Cvitkovitch DG, Chang P, Bast DJ, Handfield M, Hillman JD, de Azavedo JC. 2005. Identification of group A Streptococcus antigenic determinants upregulated in vivo. Infect. Immun. 73: 6026-6038.   DOI   ScienceOn
24 Smith HK, Shepherd M, Monk C, Green J, Poole RK. 2011. The NO-responsive hemoglobins of Campylobacter jejuni: concerted responses of two globins to NO and evidence in vitro for globin regulation by the transcription factor NssR. Nitric Oxide 25: 234-241.   DOI   ScienceOn
25 Sztajer H, Lemme A, Vilchez R, Schulz S, Geffers R, Ying Yin Yip C, et al. 2008. Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation. J. Bacteriol. 190: 401-415.   DOI   ScienceOn
26 Velayudhan J, Kelly D. 2002. Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148: 685-694.   DOI
27 Jeon B, Itoh K, Misawa N, Ryu S. 2003. Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni. Microbiol. Immunol. 47: 833-839.   DOI
28 John M, Kudva IT, Griffin RW, Dodson AW, McManus B, Krastins B, et al. 2005. Use of in vivo-induced antigen technology for identification of Escherichia coli O157:H7 proteins expressed during human infection. Infect. Immun. 73: 2665-2679.   DOI   ScienceOn
29 Joslin SN, Hendrixson DR. 2009. Activation of the Campylobacter jejuni FlgSR two-component system is linked to the flagellar export apparatus. J. Bacteriol. 191: 2656-2667.   DOI   ScienceOn
30 Leach S, Harvey P, Wali R. 1997. Changes with growth rate in the membrane lipid composition of and amino acid utilization by continuous cultures of Campylobacter jejuni. J. Appl. Microbiol. 82: 631-640.   DOI
31 Lertsethtakarn P, Ottemann KM, Hendrixson DR. 2011. Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65: 389-410.   DOI   ScienceOn
32 Li Q, Hu Y, Chen J, Liu Z, Han J, Sun L, Jiao X. 2013. Identification of Salmonella enterica serovar Pullorum antigenic determinants expressed in vivo. Infect. Immun. 81: 3119-3127.   DOI   ScienceOn
33 Lowry JE, Goodridge L, Vernati G, Fluegel AM, Edwards WH, Andrews GP. 2010. Identification of Brucella abortus genes in elk (Cervus elaphus) using in vivo-induced antigen technology (IVIAT) reveals novel markers of infection. Vet. Microbiol. 142: 367-372.   DOI   ScienceOn
34 Malik-Kale P, Parker CT, Konkel ME. 2008. Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J. Bacteriol. 190: 2286-2297.   DOI   ScienceOn
35 Gu H, Zhu H, Lu C. 2009. Use of in vivo-induced antigen technology (IVIAT) for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens. BMC Microbiol. 9: 201.   DOI   ScienceOn
36 Handfield M, Brady LJ, Progulske-Fox A, Hillman JD. 2000. IVIAT: a novel method to identify microbial genes expressed specifically during human infections. Trends Microbiol. 8: 336-339.   DOI   ScienceOn
37 Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, et al. 2003. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl. Acad. Sci. USA 100: 8508-8513.   DOI   ScienceOn
38 Hartley-Tassell LE, Shewell LK, Day CJ, Wilson JC, Sandhu R, Ketley JM, Korolik V. 2010. Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol. Microbiol. 75: 710-730.   DOI
39 Hofreuter D, Novik V, Galan JE. 2008. Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 4: 425-433.   DOI   ScienceOn
40 Zou YX, Mo ZL, Hao B, Ye XH, Guo DS, Zhang PJ. 2010. Screening of genes expressed in vivo after infection by Vibrio anguillarum M3. Lett. Appl. Microbiol. 51: 564-569.   DOI   ScienceOn
41 Cordwell SJ, Len AC, Touma RG, Scott NE, Falconer L, Jones D, et al. 2008. Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies. Proteomics 8: 122-139.   DOI   ScienceOn
42 Harris JB, Baresch-Bernal A, Rollins SM, Alam A, LaRocque RC, Bikowski M, et al. 2006. Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect. Immun. 74: 5161- 5168.   DOI   ScienceOn