• Title/Summary/Keyword: Virtual phantom

Search Result 56, Processing Time 0.018 seconds

Chest-wall Surface Dose During Post-mastectomy Radiation Therapy, with and without Nonmagnetic Bolus: A Phantom Study

  • Choi, Cheon Woong;Hong, Joo Wan;Park, Cheol Soo;Ahn, Jae Ouk
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.293-297
    • /
    • 2016
  • For mastectomy patients, sufficient doses of radiation should be delivered to the surface of the chest wall to prevent recurrence. A bolus is used to increase the surface dose on the chest wall, whereby the surface dose is confirmed with the use of a virtual bolus during the computerized treatment-planning process. The purpose of this study is an examination of the difference between the dose of the computerized treatment plan and the dose that is measured on the bolus. Part of the left breast of an Anderson Rando phantom was removed, followed by the attainment of computed tomography (CT) images that were used as the basis for computerized treatment plans that were established with no bolus, a 3 mm-thick bolus, a 5 mm-thick bolus, and a 10 mm-thick bolus. For the computerized treatment plan, a prescribed dose regimen was dispensed daily and planning target volume (PTV) coverage was applied according to the RTOG 1304 guidelines. Using each of the established computerized treatment plans, chest-wall doses of 5 points were measured; this chest-wall dose was used as the standard for the analysis of this study, while the level of significance was set at P < 0.05. The measurement of the chest-wall dose with no bolus is 1.6 % to 10.3 % higher, and the differences of the minimum average and the maximum average of the five measurement points are -13.8 and -1.9, respectively (P < 0.05); however, when the bolus was used, the dosage was measured as 3.7 % to 9.2 % lower, and the differences of the minimum average and the maximum average are 7.4 and 9.0, -1.2 and 17.4, and 8.1 and 19.8 for 3 mm, 5 mm, and 10 mm, respectively (P < 0.05). As the thickness of the bolus is increased, the differences of the average surface dose are further increased. There are a variety of factors that affect the surface dose on the chest wall during post-mastectomy radiation therapy, for which verification is required; in particular, a consideration of the appropriate thickness and the number of uses when a bolus is used, and which has the greatest effect on the surface dose on the chest wall, is considered necessary.

Haptic and Sound Grid for Enhanced Positioning in 3-D Virtual Environment (햅틱 / 사운드 그리드를 이용한 3차원 가상 환경 내의 위치 정보 인식 향상)

  • Kim, Seung-Chan;Yang, Tae-Heon;Kwon, Dong-Soo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.447-454
    • /
    • 2007
  • 본 논문에서는 사용자의 가상환경 내의 위치 정보에 대한 감각을 향상시키는 방법론으로서 햅틱 피드백(haptic feedback)과 사운드 피드백(sound feedback)의 모달리티를 활용한 그리드(grid)를 제안한다. 제안된 그리드는 사용자의 3차원 공간 내의 움직임(explorative procedure)에 추가적인 비 시각적인(non-visual) 위치정보 피드백을 부여하는데 그 목적을 두고 있다. 햅틱 모달리티를 활용한 3차원 그리드는 SensAble사의 PHANTOM(R) Omni$^{TM}$ 를 활용하여 설계되었으며, 사운드 모달리티를 활용한 경우 저주파 배경음의 주파수 특성(frequency characteristics of sound source)을 사용자 손의 공간 좌표값에 근거하여 재생 시의 표본 추출 비율(sampling rate)를 연속적으로 바꾸는 방식으로 설계되었다. 이러한 공간 그리드는 두 모달리티 각각의 독립적인 제시 및 동시 제시/제거를 통해 평가되었으며, 동시 제시의 경우 두 모달리티간의 어긋남(cross-modal asynchrony)이 없도록 설계되어 사용자의 공간 작업 시 모달리티간의 조화 (manipulating congruency)를 확보할 수 있도록 하였다. 실험을 통해 얻어진 결과는 그것의 통계적 유의미성을 분석하기 위해 다원변량분석과 사후검증(Turkey. HSD)을 거쳐 해석이 되었다. 공간 내 특정 좌표 선택을 기준으로 하는 그리드의 사용자 평과 결과, 3차원 내의 움직임에 대해 햅틱 및 사운드 피드백의 비 시각적 피드백은 사용자의 공간 작업의 오차를 줄여 주고 있음이 확인되었다. 특히 시각적인 정보만으로 확인하기 어려운 Z축 상의 움직임은 그리드의 도움으로 그 오차정도가 50% 이상 줄어 드는 것으로 확인되었다(F=19.82, p<0.01). 이러한 시각적 정보를 보존하는 햅틱, 사운드 피드백 방식을 HCI의 중요한 요소인 사용성과 유용성과 연관시켜 MMHCI(multimodal human-computer interaction) 방법론으로의 적용 가능성을 검토해 본다.

  • PDF

Efficient Implementation of Synthetic Aperture Imaging with Virtual Source Element in B-mode Ultrasound System Based on Sparse Array (희박 어레이 기반의 효율적인 양방향 화소단위 집속 기법의 구현)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.419-430
    • /
    • 2002
  • In this paper. we propose an efficient method for implementing hi-directional pixel-based focusing(BiPBF) based on a sparse array imaging technique. The proposed method can improve spatial resolution and frame rate of ultrasound imaging with reduced hardware complexity by synthesizing transmit apertures with a small number of sparsely distributed subapertures. As the distance between adjacent subapertures increases, however. the image resolution tends to decrease due to the elevation of grating lobes. Such grating lobes can be eliminated in conventional synthetic aperture imaging techniques. On the contrary, grating lobes arisen from employing sparse synthetic transmit apertures can not be eliminated, which has been shown analytically in this paper. We also propose the condition and method for suppressing the grating lobes below -40dB, which is generally required in practical imaging. by placing the transmit focal depth at a near depth and properly selecting the subaperture distance in Proportion to receive aperture size. The results of both the Phantom and in vivo experiments show that the proposed method implements two-wav dynamic focusing using a smaller number of subapertures, resulting in reduced system complexity and increased frame rate.

Virtual calibration of whole-body counters to consider the size dependency of counting efficiency using Monte Carlo simulations

  • Park, MinSeok;Kim, Han Sung;Yoo, Jaeryong;Kim, Chan Hyeong;Jang, Won Il;Park, Sunhoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4122-4129
    • /
    • 2021
  • The counting efficiencies obtained using anthropomorphic physical phantoms are generally used in whole-body counting measurements to determine the level of internal contamination in the body. Geometrical discrepancies between phantoms and measured individuals affect the counting efficiency, and thus, considering individual physical characteristics is crucial to improve the accuracy of activity estimates. In the present study, the counting efficiencies of whole-body counting measurements were calculated considering individual physical characteristics by employing Monte Carlo simulation for calibration. The NaI(Tl)-based stand-up and HPGe-based bed type commercial whole-body counters were used for calculating the counting efficiencies. The counting efficiencies were obtained from 19 computational phantoms representing various shapes and sizes of the measured individuals. The discrepancies in the counting efficiencies obtained using the computational and physical phantoms range from 2% to 33%, and the results indicate that the counting efficiency depends on the size of the measured individual. Taking into account the body size, the equations for estimating the counting efficiencies were derived from the relationship between the counting efficiencies and the body-build index of the subject. These equations can aid in minimizing the size dependency of the counting efficiency and provide more accurate measurements of internal contamination in whole-body counting measurements.

Analysis on the Effect of Field Width in the Delineation of Planning Target Volume for TomoTherapy (토모테라피에서 계획용표적체적 설정 시 필드 폭 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mee-Sun;Jung, Jae-Uk
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.323-331
    • /
    • 2010
  • The Hi-Art system for TomoTherapy allows only three (1.0 cm, 2.5 cm, 5.0 cm) field widths and this can produce different dose distribution around the end of PTV (Planning target volume) in the direction of jaw movement. In this study, we investigated the effect of field width on the dose difference around the PTV using DQA (Delivery quality assurance) phantom and real clinical patient cases. In the analysis with DQA phantom, the calculated dose and irradiated films showed that the more dose was widely spreaded out in the end region of PTV as increase of field width. The 2.5 cm field width showed a 1.6 cm wider dose profile and the 5.0 cm field width showed a 4.2 cm wider dose profile compared with the 1.0 cm field width in the region of 50% of maximum dose. The analysis with four patient cases also showed the similar results with the DQA phantom which means that more dose was irradiated around the superior and inferior end of PTV as an increase of field width. The 5.0 cm field width produced the remarkable high dose distribution around the end region of PTV and we could evaluate the effect quantitatively with the calculation of DVH (Dose volume histogram) of the virtual PTVs which were delineated around the end of PTV in the direction of jaw variation. From these results, we could verify that the margin for PTV in the direction of table movement should be reduced compared with the conventional margin for PTV when the large field such as 5.0 cm was used in TomoTherapy.

Evaluation of beam delivery accuracy for Small sized lung SBRT in low density lung tissue (Small sized lung SBRT 치료시 폐 실질 조직에서의 계획선량 전달 정확성 평가)

  • Oh, Hye Gyung;Son, Sang Jun;Park, Jang Pil;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate beam delivery accuracy for small sized lung SBRT through experiment. In order to assess the accuracy, Eclipse TPS(Treatment planning system) equipped Acuros XB and radiochromic film were used for the dose distribution. Comparing calculated and measured dose distribution, evaluated the margin for PTV(Planning target volume) in lung tissue. Materials and Methods : Acquiring CT images for Rando phantom, planned virtual target volume by size(diameter 2, 3, 4, 5 cm) in right lung. All plans were normalized to the target Volume=prescribed 95 % with 6MV FFF VMAT 2 Arc. To compare with calculated and measured dose distribution, film was inserted in rando phantom and irradiated in axial direction. The indexes of evaluation are percentage difference(%Diff) for absolute dose, RMSE(Root-mean-square-error) value for relative dose, coverage ratio and average dose in PTV. Results: The maximum difference at center point was -4.65 % in diameter 2 cm size. And the RMSE value between the calculated and measured off-axis dose distribution indicated that the measured dose distribution in diameter 2 cm was different from calculated and inaccurate compare to diameter 5 cm. In addition, Distance prescribed 95 % dose($D_{95}$) in diameter 2 cm was not covered in PTV and average dose value was lowest in all sizes. Conclusion: This study demonstrated that small sized PTV was not enough covered with prescribed dose in low density lung tissue. All indexes of experimental results in diameter 2 cm were much different from other sizes. It is showed that minimized PTV is not accurate and affects the results of radiation therapy. It is considered that extended margin at small PTV in low density lung tissue for enhancing target center dose is necessary and don't need to constraint Maximum dose in optimization.

Commissioning Experience of Tri-Cobalt-60 MRI-guided Radiation Therapy System (자기공명영상유도 Co-60 기반 방사선치료기기의 커미셔닝 경험)

  • Park, Jong Min;Park, So-Yeon;Wu, Hong-Gyun;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.193-200
    • /
    • 2015
  • The aim of this study is to present commissioning results of the ViewRay system. We verified safety functions of the ViewRay system. For imaging system, we acquired signal to noise ratio (SNR) and image uniformity. In addition, we checked spatial integrity of the image. Couch movement accuracy and coincidence of isocenters (radiation therapy system, imaging system and virtual isocneter) was verified. Accuracy of MLC positioing was checked. We performed reference dosimetry according to American Association of Physicists in Medicine (AAPM) Task Group 51 (TG-51) in water phantom for head 1 and 3. The deviations between measurements and calculation of percent depth dose (PDD) and output factor were evaluated. Finally, we performed gamma evaluations with a total of 8 IMRT plans as an end-to-end (E2E) test of the system. Every safety system of ViewRay operated properly. The values of SNR and Uniformity met the tolerance level. Every point within 10 cm and 17.5 cm radii about the isocenter showed deviations less than 1 mm and 2 mm, respectively. The average couch movement errors in transverse (x), longitudinal (y) and vertical (z) directions were 0.2 mm, 0.1 mm and 0.2 mm, respectively. The deviations between radiation isocenter and virtual isocenter in x, y and z directions were 0 mm, 0 mm and 0.3 mm, respectively. Those between virtual isocenter and imaging isocenter were 0.6 mm, 0.5 mm and 0.2 mm, respectively. The average MLC positioning errors were less than 0.6 mm. The deviations of output, PDDs between mesured vs. BJR supplement 25, PDDs between measured and calculated and output factors of each head were less than 0.5%, 1%, 1% and 2%, respectively. For E2E test, average gamma passing rate with 3%/3 mm criterion was $99.9%{\pm}0.1%$.

Preliminary Study for Imaging of Therapy Region from Boron Neutron Capture Therapy (붕소 중성자 포획 치료에서 치료 영역 영상화를 위한 예비 연구)

  • Jung, Joo-Young;Yoon, Do-Kun;Han, Seong-Min;Jang, HongSeok;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • The purpose of this study was to confirm the feasibility of imaging of therapy region from the boron neutron capture therapy (BNCT) using the measurement of the prompt gamma ray depending on the neutron flux. Through the Monte Carlo simulation, we performed the verification of physical phenomena from the BNCT; (1) the effects of neutron according to the existence of boron uptake region (BUR), (2) the internal and external measurement of prompt gamma ray dose, (3) the energy spectrum by the prompt gamma ray. All simulation results were deducted using the Monte Carlo n-particle extended (MCNPX, Ver.2.6.0, Los Alamos National Laboratory, Los Alamos, NM, USA) simulation tool. The virtual water phantom, thermal neutron source, and BURs were simulated using the MCNPX. The energy of the thermal neutron source was defined as below 1 eV with 2,000,000 n/sec flux. The prompt gamma ray was measured with the direction of beam path in the water phantom. The detector material was defined as the lutetium-yttrium oxyorthosilicate (Lu0,6Y1,4Si0,5:Ce; LYSO) scintillator with lead shielding for the collimation. The BUR's height was 5 cm with the 28 frames (bin: 0.18 cm) for the dose calculation. The neutron flux was decreased dramatically at the shallow region of BUR. In addition, the dose of prompt gamma ray was confirmed at the 9 cm depth from water surface, which is the start point of the BUR. In the energy spectrum, the prompt gamma ray peak of the 478 keV was appeared clearly with full width at half maximum (FWHM) of the 41 keV (energy resolution: 8.5%). In conclusion, the therapy region can be monitored by the gamma camera and single photon emission computed tomography (SPECT) using the measurement of the prompt gamma ray during the BNCT.

Evaluation of 3DVH Software for the Patient Dose Analysis in TomoTherapy (토모테라피 환자 치료 선량 분석을 위한 3DVH 프로그램 평가)

  • Song, Ju-Young;Kim, Yong-Hyeob;Jeong, Jae-Uk;Yoon, Mee Sun;Ahn, Sung-Ja;Chung, Woong-Ki;Nam, Taek-Keun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.201-207
    • /
    • 2015
  • The new function of 3DVH software for dose calculation inside the patient undergoing TomoTherapy treatment by applying the measured data obtained by ArcCHECK was recently released. In this study, the dosimetric accuracy of 3DVH for the TomoTherapy DQA process was evaluated by the comparison of measured dose distribution with the dose calculated using 3DVH. The 2D diode detector array MapCHECK phantom was used for the TomoTherapy planning of virtual patient and for the measurement of the compared dose. The average pass rate of gamma evaluation between the measured dose in the MapCHECK phantom and the recalculated dose in 3DVH was $92.6{\pm}3.5%$, and the error was greater than the average pass rate, $99.0{\pm}1.2%$, in the gamma evaluation results with the dose calculated in TomoTherapy planning system. The error was also greater than that in the gamma evaluation results in the RapidArc analysis, which showed the average pass rate of $99.3{\pm}0.9%$. The evaluated accuracy of 3DVH software for TomoTherapy DQA process in this study seemed to have some uncertainty for the clinical use. It is recommended to perform a proper analysis before using the 3DVH software for dose recalculation of the patient in the TomoTherapy DQA process considering the initial application stage in clinical use.

Evaluation of Dose Distribution Using Gafchromic $EBT^{(R)}$ Film (Gafchromic $EBT^{(R)}$ 필름을 이용한 선량분포의 평가)

  • Kang, Se-Sik;Ko, Seong-Jin;Jang, Eun-Sung
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2007
  • Dose evaluation for small field such as stereotactic radiosurgery was performed using $Gafchromic^{(R)}$ EBT film. Every film which irradiated 6MV photon beam was scanned and obtained the optical density(OD) by flat bed scanner after 24 hours of irradiation. This study compared dose from diode in water and Gafchromic $EBT^{(R)}$ film in acrylic phantom to verify the reliability of the film, and to evaluate the SRS in clinical dose distributions from calculation and measurement in the region of virtual target in humanoid and cylindrical phantoms were compared. The Gafchromic $EBT^{(R)}$ film was found to be linear up to 9Gy. The $D_{max}$ for 6 MV was measured at 1.5 cm from the surface by both of diode and the film. As the depth is deeper, the error was measured within $2{\sim}3%$ at $10{\sim}20\;cm$ depth. Comparing between distribution from calculation and measurement, we found that there is 5% error at 90% isodose line. We found that given dose could be measured accurately by using the phantoms. It was feasible to use the Gafchromic $EBT^{(R)}$ film in quality assurance of SRS.

  • PDF