Efficient Implementation of Synthetic Aperture Imaging with Virtual Source Element in B-mode Ultrasound System Based on Sparse Array

희박 어레이 기반의 효율적인 양방향 화소단위 집속 기법의 구현

  • Published : 2002.12.01

Abstract

In this paper. we propose an efficient method for implementing hi-directional pixel-based focusing(BiPBF) based on a sparse array imaging technique. The proposed method can improve spatial resolution and frame rate of ultrasound imaging with reduced hardware complexity by synthesizing transmit apertures with a small number of sparsely distributed subapertures. As the distance between adjacent subapertures increases, however. the image resolution tends to decrease due to the elevation of grating lobes. Such grating lobes can be eliminated in conventional synthetic aperture imaging techniques. On the contrary, grating lobes arisen from employing sparse synthetic transmit apertures can not be eliminated, which has been shown analytically in this paper. We also propose the condition and method for suppressing the grating lobes below -40dB, which is generally required in practical imaging. by placing the transmit focal depth at a near depth and properly selecting the subaperture distance in Proportion to receive aperture size. The results of both the Phantom and in vivo experiments show that the proposed method implements two-wav dynamic focusing using a smaller number of subapertures, resulting in reduced system complexity and increased frame rate.

본 논문에서는 양방향 화소단위 집속 기법을 희박 어레이 기법을 사용하여 효율적으로 구현하는 방법에 대해 제안한다. 제안한 방법은 각 주사선을 구성할 때 합성에 이용되는 부구경 사이의 간격을 멀리함으로써 적은 수의 부구경으로 큰 크기의 합성구경을 형성하여 시스템의 복잡도를 감소시키면서 초음파 영상의 해상도와 프레임율을 향상시키게 된다. 하지만 이때 합성에 사용되는 부구경 사이의 간격 증가로 인해 그레이팅 로브 값은 상승하게 된다. 이러한 그레이팅 로브는 일반적인 합성구경 기법에서는 제거할 수 있다. 하지만 본 논문에서는 일반적인 합성구경 기법과는 달리 양방향 화소단위 집속 기법에서는 부구경 사이의 간격이 클 경우 발생하는 그레이팅 로브를 제거할 수 없음을 이론적으로 해석하였다. 또한 이러한 그레이팅 로브 값을 송신 집속점을 근거리에 위치시키고 합성에 사용되는 부구경간의 간격을 수신부구경의 크기에 비례하여 적절히 선택함으로써 의료용 초음파 영상에 적합한 -40dB 이하로 억제하는 방법과 조건을 제시하였다. 모의 생체와 실제 인체 실험 결과 제안한 방법을 통해 보다 적은 수의 부구경을 이용하여 더욱 빠른 프레임율의 양방향 화소단위 집속 기법의 구현이 가능함을 확인하였다

Keywords

References

  1. Medical Imaging Systems A. Macovski
  2. Ultrason. Imaging v.9 A Pipelined sampling delay focusing in ultrasonic imaging systems J.H. Kim;T.K. Song;S.B. Park https://doi.org/10.1016/0161-7346(87)90007-1
  3. Ultrason. Imaging v.12 A new digital array systems for dynamic focusing and steering with reduced sampling rate T.K. Song;S.B. Park https://doi.org/10.1016/0161-7346(90)90217-L
  4. IEEE Ultrason. Symp. Real-time phased array imaging using digital beam foming and autonomous channel control M. O'Donnell et al.
  5. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. v.42 Subaperture processing for ultrasonic imaging M. Karaman;M. O'Donnell
  6. J. Biomed. Eng. Res. v.20 no.4 Analysis of synthetic aperture techniques for ultrasound linear-scan imaging T.K. Song
  7. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. v.41 Ultrasound synthetic aperture imaging: Monostatic approach J.T. Ylitalo;H. Ermert https://doi.org/10.1109/58.285467
  8. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. v.45 no.4 Realtime 3-D ultrasound imaging using sparse synthetic aperture beamforming G.R. Lockwood;J.R. Talman;S.S. Brunke https://doi.org/10.1109/58.710573
  9. IEEE Trans. Ultrason. Ferroelect. Freq. Contr v.42 Synthetic aperture imaging for small scale systems M. Karaman;P. -C. Li;M. O'Donnell https://doi.org/10.1109/58.384453
  10. IEEE Trans. Ultrason. Ferroelec. Freq. Contr. v.47 A Study of synthetic-aperture imaging with virtual source elements in B-mode utlrasound imaging systems M. -H. Bae;M.-K. Jeong https://doi.org/10.1109/58.883540
  11. Elec. Letters v.24 no.22 Bidirectional pixel based focusing in conventional B-mode ultrasound imaging M.H. Bae;M.K. Jeong
  12. Ph.D. dissertation, Dept. Elec. Eng. A Study on Grating Lobe Elimination in Synthetic Focusing Imaging and Its Application to Three Dimensional Ultrasonic Imaging System C.Y. Rew
  13. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. v.39 Synthetic receive aperture imaging with phase correction for motion and for tissue inhomogeneities-Part II: Basic principles G.E. Trahey;L.F. Nock https://doi.org/10.1109/58.148540
  14. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. v.45 no.4 Adaptive Multi-element Synthetic Aperture Imaging with Motion and Phase Aberration Correction Mistafa Karaman;Hasan S. Bilge;Matthew O'Donnell https://doi.org/10.1109/58.710591
  15. Journal of Biomedical Engineering Research v.23 no.2 An Efficient Motion Estimation and Compensation Method for Ultrasound Synthetic Aperture Imaging K.S. Kim;J. S. Hwang;T.K. Song
  16. Proceedings of the 22nd spring conferences of Korea Society of Medical & Biological Engineering Application of a Unified Synthetic Aperture Model for Analysis of Bidirectional Pixel-Based Focusing Scheme J.H. Chang;J. S. Hwang;T. K. Song