• Title/Summary/Keyword: Virtual Flight Control System

Search Result 22, Processing Time 0.022 seconds

Verification of “dual-master” Duplication Flight Control System using Simulink Virtual Module (Simulink 가상모듈을 이용한 “dual-master” 이중구조 비행제어시스템 검증)

  • Kim, Sung-Su;Kim, Sung-Hwan;Jang, Se-Ah;Choi, Kee-Young;Park, Choon-Bae;Rhee, Ihn-Seok;Ha, Cheol-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.867-873
    • /
    • 2008
  • Model based virtual Flight Control System construction is essential for Fly-by-Wire Flight Control System verification & validation(V&V) of concurrent engineering base. We researched the concept of dual-architecture system for virtual system construction, and analyzed Flight Control System that is applied to high altitude long endurance(HAE) UAS. Finally, we constructed the model based virtual Flight Control System with system analysis and achieved system verification about flight critical failure modes. Analysis target is RQ-4A.

Development and Flight Test of Unmanned Autonomous Rotor Navigation System Based on Virtual Instrumentation Platform (Virtual Instrumentation 플랫폼 기반 무인 자율 로터 항법시스템 개발 및 비행시험)

  • Lee, Byoung-Jin;Park, Sang-Jun;Lee, Seung-Jun;Kim, Chang-Joo;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.833-842
    • /
    • 2011
  • The objectives of this research are development of guidance, navigation and control system for RUAV on virtual instrumentation and real flight test. For this research, the system is divided to DAQ (data acquisition) section, actuator section and controller section. And the hardware and software on each sections are realized on LabVIEW base. Waypoint guidance and control of auto flight are realized using PID gain tuning and waypoint vector tracking guidance algorism. For safe flight test, auto/manual switching module isolated from FCS (Flight Control System) is developed. By using the switch module, swift mode change was achieved during emergency flight case. Consequently, a meter level error of flight performance is achieved.

Implementation of Virtual Instrumentation based Realtime Vision Guided Autopilot System and Onboard Flight Test using Rotory UAV (가상계측기반 실시간 영상유도 자동비행 시스템 구현 및 무인 로터기를 이용한 비행시험)

  • Lee, Byoung-Jin;Yun, Suk-Chang;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.878-886
    • /
    • 2012
  • This paper investigates the implementation and flight test of realtime vision guided autopilot system based on virtual instrumentation platform. A graphical design process via virtual instrumentation platform is fully used for the image processing, communication between systems, vehicle dynamics control, and vision coupled guidance algorithms. A significatnt ojective of the algorithm is to achieve an environment robust autopilot despite wind and an irregular image acquisition condition. For a robust vision guided path tracking and hovering performance, the flight path guidance logic is combined in a multi conditional basis with the position estimation algorithm coupled with the vehicle attitude dynamics. An onboard flight test equipped with the developed realtime vision guided autopilot system is done using the rotary UAV system with full attitude control capability. Outdoor flight test demonstrated that the designed vision guided autopilot system succeeded in UAV's hovering on top of ground target within about several meters under geenral windy environment.

Development of ROS-based Flight and Mission State Communication Node for X-Plane 11-based Flight Simulation Environment

  • Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-84
    • /
    • 2021
  • A novel robot-operating-system-based flight and mission state communication node for X-Plane 11 flight control simulation environments and its simulation results were discussed. Although the proposed communication method requires considerable implementation steps compared with the conventional MATLAB/Simulink-based User Datagram Protocol (UDP) block utilization method, the proposed method enables a direct comparison of cockpit-view images captured during flight with the flight data. This comparison is useful for data acquisition under virtual environments and for the development of flight control systems. The fixed/rotary-wing and ground terrain elements simulated in virtual environments exhibited excellent visualization outputs, which can overcome time and space constraints on flight experiments and validation of missionary algorithms with complex logic.

Building Mixed Reality System for a VR Flight Simulator (비행 VR 시뮬레이터를 위한 혼합 현실 환경의 구축)

  • 이종환;한순흥
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.45-52
    • /
    • 2004
  • This paper presents a prototype visualization system of mixed reality for a VR flight simulator. The chroma key technique is used to build the mixed reality model for a VR flight simulator. The Daedeok science town can be visualized in real time according to the rider control. He can also see his own hand/foot operating the control stick/rudder as well as virtual environment projected to the blue-screen using a video-see-through HMD.

  • PDF

The Development of Virtual Fire Control System Considering Operational Environment of Helicopter (헬기 운용환경을 고려한 가상 사격 통제 시스템 개발)

  • Kim, Woosik;Lee, Dongho;Jang, Indong;Park, Hanjoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.448-455
    • /
    • 2014
  • Virtual Fire Control System(VFCS) in attack helicopter is developed. VFCS is comprised of multifunction display, store management computer, mission computer, target acquisition and designation system, mission planning system, weapon simulator and flight simulator. Weapon engagement process under the operational environment of helicopter was considered by using the VFCS. We considered hellfire missile, tow missile, unguided rocket and turret gun. The results of this study will be utilized efficiently on integrated fire control system SIL(System Integration Lab.) in attack helicopter.

무인비행선 HILS 시스템 개발

  • Kim, Seong-Pil;Ahn, Iee-Ki;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • In this paper, a HILS(Hardware-In-the-Loop-Simulation) System designed for an unmanned airship, which is under development by KARI, is introduced. A HILS system is essential to validate flight control systems on the ground. The HILS system consists of several systems: a virtual ADT(airborne data terminal) system, a virtual payload system, a virtual airship system, and a status display system. Also, a 3-axis motion table and an inertial navigation sensor are included. The reliability of the flight control computer has been validated by HILS tests.

  • PDF

Design and Implementation of Multi-Function Display Operational Flight Program and Middleware Using Real-Time and Embedded System Java Virtual Machine (실시간 임베디드 시스템용 자바 가상머신을 이용한 다기능 시현 비행운용 프로그램 및 미들웨어 설계 및 구현)

  • Won, Hyeon-Kwon;Jeong, Chai-Hun;Choi, Kyong-Sik;Kim, Jong-Pil;Kim, In-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1060-1068
    • /
    • 2011
  • In this paper, we present a development of an Operation Flight Program(OFP) on Real Time Operating System(RTOS) and Java Virtual Machine(JVM) of real-time and embedded system. The OFPs are consisted of Multi Function Display(MFD), Integrated Up Front Control(IUFC), Head Up Display(HUD) and Fire Control(FC) and loaded for localization Mission Computer(MC). This paper describes the structure and implementation of a MFD OFP and middleware based on Java.

Virtual Flight Test for Conceptual Lunar Lander Demonstrator (달 착륙선 개념설계형상 검증모델 가상비행시험)

  • Lee, Won-Beom;Rew, Dong-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • The conceptual design lunar lander demonstrator has been developed to use as a test bed for advanced spacecraft technologies and to test a prototype planetary lander capable of vertical takeoff and landing. Size of the lunar lander demonstrator is the same as that of lunar lander conceptually designed, however, the weight of lunar lander demonstrator is designed in 1/6 scale in consideration of gravity difference between moon and earth. The thruster clustering and virtual flight test were performed in the demonstrator fixed on the ground. The demonstrator ground test has been conducted for two months in the test site for the solid motor combustion of the Goheung Flight Center. The purposes of ground test of demonstrator are to demonstrate and verify essential electronics, propulsion system, control algorithm, embedded software, structure and system operation technologies before developing the flight model lander. This paper is described about the virtual flight test including test configuration, test aims and test facilities

Autonomous Formation Flight Tests of Multiple UAVs (다수 무인항공기의 자동 편대비행 시험)

  • Song, Yong-Kyu;Heo, Chang-Hwan;Lee, Sang-Jun;Kim, Jung-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.264-273
    • /
    • 2010
  • In this work, autonomous formation flight tests of multiple UAVs are experimentally studied. After a guidance and control system for a UAV is designed and tested, PID formation controller for follower UAV is tested using longitudinal and lateral distance feedback. It is shown that more stable and efficient formation guidance system is obtained by using position and attitude of the leader aircraft, which is exploited to calculate virtual waypoint for follower. In order to improve transient response during turn, part of roll command of the leader is added to the guidance command. Finally, autonomous formation flight test results of 3 UAVs are shown by using the best guidance algorithm suggested.