• Title/Summary/Keyword: Vinegar production

Search Result 111, Processing Time 0.027 seconds

Fermented Production of Onion Vinegar and Its Biological Activities (알코올 발효과정 중 양파착즙액 휘발성 향기성분 변화)

  • Jeong, Eun-Jeong;Cha, Yong-Jun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.1
    • /
    • pp.120-128
    • /
    • 2017
  • This study aimed to provide volatile flavor compounds of three onion products through thermal process and alcohol fermentation, to meet the quality standard of onion products. The identified components of onion extracts (OE) included 49 (18 sulfur-containing compounds, 5 alcohols, 8 acids, 3 ketones, 4 esters, 4 aromatic compounds, 2 aldehydes, 1 pyrazines and 4 miscellaneous compounds), and 55 (17 sulfur-containing compounds, 15 alcohols, 5 acids, 11 ketones, 3 aromatic compounds, 2 aldehydes and 1 pyrazine) in autoclave-sterilized onion extracts (SOE); and 69 (10 sulfur-containing compounds, 27 alcohols, 11 acids, 11 ketones, 6 esters, 1 aromatic compound and 3 pyrazines) in onion wine (OW), respectively. Among the major flavor classes, sulfur-containing compounds (36.8%), acids (31.3%) and aldehydes (13.6%) in OE were changed to alcohols (46.5%) and ketones (27.3%) in SOE whereas, alcohols (56.3%) and acids (26.6%) in OW. Moreover, 1,3-butanediol, 2,3-butanediol, and 3-hydroxy-2-butanone were highly detected in SOE whereas, acetic acid, 3-methylbutanol, 2-phenylethanol and 1,2,3-propanetriol in OW.

Characterization and Isolation of Bacteria Producing Cellulose (Cellulose 생합성 세균의 분리 및 특성)

  • Lee, Seung-Jin;Yoo, Ju-Soon;Chung, Soo-Yeol;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.101-106
    • /
    • 1997
  • A screening was performed to isolate the cellulose-producing microorganisms from vinegar in Korea. The isolated strain was identified as Acetobacter sp. with respect to physiological and biochemical characteristics and designated as Acetobacter CBI-2. Cellulose production of Acetobacter CBI-2 was equal with the well known cellulose-producing bacteria, A. xylinum. The result of separation on thin layer chromatography(TLC) was consistent with the degradation product of native cellulose. The presence of genes required for the cellulose biosynthesis in Acetobacter CBI-2 was confirmed by Southern hybridization.

  • PDF

Optimum Alcohol Fermenting Conditions for Kiwi (Actinidia chinensis) Wine

  • Jang, Se-Young;Woo, Seung-Mi;Kim, Ok-Mi;Choi, In-Wook;Jeong, Yong-Jin
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.526-530
    • /
    • 2007
  • The objective of this study was to establish the optimum alcohol fermenting conditions for the processing of kiwi wine and vinegar products. Six yeast strains were examined for their alcohol production from kiwi at $30^{\circ}C$ for 72 hr with continuous shaking at 100 rpm. Under these conditions, Saccharomyces kluyveri DJ97 produced the highest alcohol content of 10.2%. As the fermentation time extended to 96 hr, the alcohol content reached a maximum of 12.75%. The optimum alcohol fermenting conditions for kiwi fruit were accomplished when kiwi was added to an equal amount of water, inoculated with S. kluyveri DJ97 and fermented at $30^{\circ}C$ for 96 hr with continuous shaking. The content of soluble solids decreased as the alcohol concentration increased, whereas little change was observed in the pH and titratable acidity during the low temperature aging process. Other alcoholic compounds, such as methanol, isopropanol, n-propanol, isobutanol, and isoamylalcohol, tended to increase as fermentation progressed.

Optimization of Fermentation Process for Acetic Acid Production (초산 생성을 위한 발효공정의 최적화)

  • Shin, Jin-A;Oh, Nam-Soon
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.217-221
    • /
    • 2010
  • Various conditions of acetic acid fermentation by Acetobacter aceti B20 strain were investigated and evaluated to optimize the fermentative production of acetic acid. The effects of the initial ethanol concentration on growth and acid productivity in a flask and fermentor were also studied. The growth of A. aceti B20 strain was inhibited as the concentration of ethanol increased. However, the highest total acidity and fermentation yield were 5.34% and 56.1%, respectively when the initial concentration of ethanol was 7% in the batch fermentation. Although the concentration of initial glucose influenced the growth rate of B20 strain, it did not influence the total acidity in the flask culture. When the agitation speed increased, the growth, total acidity and fermentation yield were all improved. In fed-batch fermentation, total acidities and fermentation yields were 7.14-8.76% and 39.1-53.0%, respectively, and their values mostly depended on the feeding methods.

Production and Structural Analysis of Cellulose by Acetobacter sp. V6 Using Static Culture (정치배양을 이용하여 Acetobacter sp. V6의 셀룰로오스 생산 최적화 및 구조 분석)

  • Kim, Jeong-Do;Jung, Ho-Il;Jeong, Jin-Ha;Park, Ki-Hyun;Jeon, Young-Dong;Hwang, Dae-Youn;Lee, Chung-Yeol;Son, Hong-Joo
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.275-280
    • /
    • 2009
  • The optimal medium compositions for the production of bacterial cellulose (BC) by a Acetobacter sp. V6, which was isolated from the traditionally fermented vinegar in Korea, were investigated in static cultures. The optimum medium compositions for BC production were 3% glucose, 3% soytone, 0.8% $K_2HPO_4$, and 0.4% ethanol, respectively. Adding $NaH_2PO_4$ or $KH_2PO_4$ had not shown the increase in BC production. Under the optimum medium compositions, the highest BC production was 44.67 g/$m^2$ in 8 days and the thickness of BC pellicle was about 1 cm. Structural properties of BC produced in the optimal medium were studied using Fourier-transform infrared spectroscopy and X-ray diffractometer. BC from the optimal medium was found to be of cellulose type I, the same as typical native cellulose. No difference in the compositions between bacterial and plant celluloses, but BC showed unique micro-network structure and high crystallinity (82%).

Characterization of Acetobacter sp. Strain CV1 Isolated from a Fermented Vinegar (고산도 생성 초산균의 분리 및 발효특성)

  • Baek, Chang-ho;Baek, Seong-yeol;Lee, Se Hee;Kang, Ji-Eun;Choi, Han-Seok;Kim, Jae-Hyun;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.126-133
    • /
    • 2015
  • Ten types of farm-made brewing vinegars were collected and four high acetic acid-producing strains (CV1, CV3, CV5, and CV6) were isolated. Among them strain CV1, exhibiting highly alcohol-resistant and acetic acid-producing properties, was selected and its taxonomic properties were investigated by phenotypic (particularly chemotaxonomic) characterization and phylogenetic inference based on 16S rRNA gene sequence analysis. On SM broth agar, cells of strain CV1 were gram-stainingnegative and formed pale white colonies with smooth to rough surfaces. Strain CV1 produced acetate from ethanol and was resistant to up to 8% (v/v) ethanol in LM broth. Strain CV1 had a G+C content of 61.0 mol%, contained meso-DAP as the cell wall amino acid, and possessed Q-10 as the major ubiquinone. A comparison of 16S rRNA gene sequences showed that strain CV1 was most closely related to Gluconacetobacter saccharivorans (≥99.0% identity). In liquid media, the optimum growth conditions for acetic acid production were 30℃ and pH >3.0 and strain CV1 produced 9.3% and 8.4% acetic acids from 10% and 9% alcohol concentrations, respectively.

Physicochemical and Antioxidant Properties of Commercial Vinegars with High Acidity (시판 고산도 식초의 이화학적 품질 및 항산화 특성)

  • Jo, Deokjo;Park, Eun-Joo;Yeo, Soo-Hwan;Jeong, Yong-Jin;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.8
    • /
    • pp.1204-1210
    • /
    • 2013
  • Various commercial vinegars of high-strength acidity (10% or more of total acidity) were investigated to compare their physicochemical and antioxidant properties. The total acidity of double-strength vinegars was relatively lower than triple-strength vinegars. Irrespective of the acidity, sugar and reducing sugar content ranged from $7.00{\sim}10.80^{\circ}Bx$ and 1.32~3,885.90 mg%, respectively. Free sugars were mainly composed of fructose and glucose, and were relatively high in double-strength vinegars. The content of acetic acid (a principal organic acid in vinegars) increased with acidity, but oxalic acid was not identified in commercial high-strength acidity vinegars. Double-strength vinegars using malt extracts were the highest in free amino acid content, showing 24 kinds of amino acids. The content of total phenolics and flavonoids was highest in apple vinegars of double-strength acidity, which affected the scavenging ability of DPPH and ABTS radicals. Overall, the quality of high-strength acidity vinegars was affected by its content and production methods, and double-strength acidity vinegar using apples showed the best antioxidant activities.

Isolation of an Acetic Acid Bacterium Acetobacter pasteurianus CK-1 and Its Fermentation Characteristics (초산균 Acetobacter pasteurianus CK-1의 분리 및 발효 특성)

  • Bang, Kyu-Ho;Kim, Chae-Won;Kim, Chul-Ho
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • To effectively isolate acetic acid bacteria for producing makgeolli vinegar, various products were researched, and Acetobacter pasteurianus CK-1, a strain that is excellent in acetic acid production, was finally isolated. The optimal growth temperature of the isolated strain was confirmed to be 30℃, and it grew well in the pH range of 5.5~6.5, with optimal growth at pH 6. A. pasteurianus CK-1 had the most active proliferation when the initial ethanol concentration in the medium was 4%, and growth was possible even at an ethanol concentration of 7%. When inoculating the isolated strain into makgeolli to induce acetic acid fermentation, the pH at the beginning of fermentation was 3.54, which was gradually lowered to 2.77 after 18 days of fermentation. The acidity was 0.75% at the beginning of fermentation and gradually started to increase from the 4th day of fermentation. The final acidity at the end of fermentation was 5.54%. In the vinegar fermented by inoculating A. pasteurianus CK-1, acetic acid content was detected to be as high as 3,575.7±48.6 mg%, and the malic acid and citric acid contents were 2,150.8±27.6 and 55.8±3.7 mg%, respectively. Further, it was confirmed that the content and ratio of the organic acids produced significantly differed depending on the type of inoculated bacterial strain. During acetic acid fermentation, the populations of yeast and A. pasteurianus CK-1 were inversely changed. In the initial stage of fermentation, yeast dominated, and after 10 days of fermentation, A. pasteurianus CK-1 slowly proliferated and reached stationary phase.

Review on Rice Flour Manufacturing and Utilization

  • Kim, Myoung Ho
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.103-112
    • /
    • 2013
  • Background: The Korean government launched a project in 2008, where the amount of rice used as raw ingredient in rice-based foods in 2012 was planned to increase up to 10% (470,000 ton) of the total rice production through developing various new rice-based processed foods and their commercial manufacturing technology. Among the four major rice-based processed foods, rice cakes and noodles need rice flour as their main raw ingredient. Technology in rice flour utilization and manufacturing is far behind than the technology pertinent to wheat flour in many subject areas. Purpose: This review aims to provide information on rice flour utilization and manufacturing with some fundamental subjects in the area of size reduction. Results: A variety of food items including bread, noodle, cake, cookie, muffin, pre-mix, beverage, vinegar, surimi, and artificial meat have found rice flour as their raw ingredient. Rice bread made out of 100% rice flour has been developed and is now sold in retail stores. Various noodle products made from rice flour are also on the market. Issues on product definition and labeling regulation about rice flour content of the products were explored. Generalized grinding equations available in the literature were seldom used in practice; instead, it has been a general practice to develop empirical equations from test milling data. Introductory remarks on three popular particle size measurement methods (sieving, Coulter counter, light diffraction) were explained. Mathematical expressions frequently used to describe particle size distribution and to correlate cumulative quantity of particles with particle size were represented. Milling methods used in producing rice flour were described along with their advantages and disadvantages. Because of their profound effect on functional properties of the rice flour, four rice flour milling equipments used at both laboratory experiments and commercial manufacturing plants were discussed.

Inhibitory Activity of Oak Pyroligneous Liquor against Coleosporium Plectranthi, an Obligate Parasite Responsible for the Rust Disease on Perilla Leaf

  • Kumar, Varun;Chauhan, Anil Kumar;Baek, Kwang-Hyun;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.453-458
    • /
    • 2011
  • BACKGROUND: Coleosporium plectranthi, an obligate parasite, which is responsible for the rust disease of Perilla frutescens, a plant in Korea, commonly known as Perilla. All rusts are obligate parasites, meaning that they require a living host to complete their life cycle. They generally do not kill the host plant but can severely reduce growth and yield. Food and feed spoilage fungi cause great economic losses worldwide. It is estimated that between 5 and 10% of the world food production is wasted due to fungal deterioration. Rust disease of Perilla is highly frequent and is widely spread in Korea. The present study was designed to investigate a novel media for the urediniospore germination in vitro and anti-rust activity as well as GC-MS analysis of oak pyroligneous liquor. METHOD AND RESULTS: Urediniospores were collected from the infected leaf of Perilla. Spore suspension was made and the suspension was inoculated in the 2% water agar media with proper humidity, then they were incubated at $26^{\circ}C$ for 56 hrs. The GC-MS analysis of the oak pyroligneous liquor was also done to check the chemical composition. GC-MS analysis of the wood vinegar was found 15 compounds, among them o-mthoxyphenol (25.93%), 2,6-dimethoxyphenol (16.06%), 4-methylenecyclohexanone (10.69%), 2,3-dihydroxytoluene (7.84%), levoglucosane (6.14%) and propanoic acid (5.32%) were the major components. Different concentration of the oak pyroligneous liquor was used, and spore inhibition was recorded on the basis of spore counting. The best results were noted at the concentration of 50% solution where 31.8% spores were inhibited. CONCLUSION: On the basis of the chemical composition of the oak pyroligneous liquor and the activity recorded we can use it as an anti-rust agent.