As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.
고정 카메라 환경에서 전경과 배경 간 픽셀값의 차를 이용하여 전경을 추출하기 위해서는 정확한 배경 영상이 필요하다. 또한, 프레임마다 변화하는 실제 배경과 맞추기 위해 배경 영상을 지속해서 갱신할 필요가 있다. 본 논문에서는 정확한 배경 영상을 생성하기 위해 실시간 처리가 가능한 딥러닝 기반 객체 탐지기의 결과를 입력받아 영상 처리에 활용함으로써 배경을 생성 및 지속적으로 갱신하고, 획득한 배경 정보를 이용해 전경을 추출하는 방법을 제안한다. 먼저, 고정 카메라에서 획득되는 비디오 데이터에 딥러닝 기반 객체 탐지기를 적용한 박스 단위 객체 탐지 결과를 지속적으로 입력받아 픽셀 단위의 배경 영상을 갱신하고 개선된 배경 영상을 도출한다. 이후, 획득한 배경 영상을 이용하여 더 정확한 전경 영상을 획득한다. 또한, 본 논문에서는 시설물에 가려진 객체를 더 정확히 탐지하기 위해서 전경 영상을 이용하여 시설물 영상을 추출하는 방법을 제안한다. 실제 돈사에 설치된 카메라로 부터 획득된 12시간 분량의 비디오를 이용하여 실험한 결과, 제안 방법을 이용한 전경과 시설물 추출이 효과적임을 확인하였다.
본 연구에서는 수어의 좌표를 압축하여 학습 시간을 획기적으로 단축시킬 수 있는 DNN (Deep Neural Network) 기반 수어 번역 모델을 제안하고 수어 좌표 압축 유무에 따른 정확도와 모델 학습 시간을 비교 분석하였다. 제안한 모델을 사용하여 수어를 번역한 결과, 수어 영상을 압축하기 전과 후의 정확도는 약 5.9% 감소한 반면, 학습 시간은 56.57% 감소하여 수어 번역 정확도 손실 대비 학습 시간에서 많은 이득을 얻는 것을 확인하였다.
딥페이크(Deepfake)란 다양한 인공지능 기술을 활용해 진짜와 같은 가짜를 만드는 영상 합성기술로, 가짜 뉴스 생성, 사기, 악의적인 도용 등에 활용되어 개인과 사회에게 심각한 혼란을 유발시키고 있다. 사회적 문제방지를 위해, 딥페이크로 생성된 이미지를 정교하게 분석하고 탐지하는 방법이 필요하다. 따라서, 본 논문에서는 딥페이크로 생성된 가짜 이미지와 진짜 이미지에서 Saliency 특징을 각각 추출하고 분석하여 합성 후보 영역을 검출하며, 추출된 특징들을 중점으로 학습하여 최종적으로 딥페이크 이미지 탐지 모델을 구축하였다. 제안된 Saliency 기반의 딥페이크 탐지 모델은 합성된 이미지, 동영상 등의 딥페이크 검출 상황에서 공통적으로 사용될 수 있으며, 다양한 비교실험을 통해 본 논문의 제안 방법이 효과적임을 보였다.
LAMS(learning activity management system)[1]는 웹 검색, 채팅, 포럼, 그룹화와 보드와 같은 학습활동을 효과적으로 설계하고 관리할 수 있는 유용한 도구 중의 하나이다. 비록 LAMS가 e-러닝 콘텐츠를 편리하게 제작할 수 있는 방법을 지원하기 위해 지속적으로 갱신되고 있지만, 플래시, 자바, 비쥬얼 C++ 등과 같은 외부 도구에 의해 만들어진 외부 교육용 콘텐츠(EEC: External Educational Contents)와 통신하기 위한 방법을 아직 제공하고 있지 않다. 웹 환경에서 작동되는 LAMS에서 교육용 콘텐츠로 사용되고 있는 비디오와 동적 콘텐츠 등과 같은 임의의 EEC를 LAMS DB에서 일관성 있게 관리해야 하나, 아직까지 EEC 정보를 LAMS DB에 저장하기 위한 기능 뿐만 아니라 LAMS DB로부터 EEC에 관한 정보를 접근할 수 있는 기능을 제공하고 있지 않다. 본 논문에서는 이러한 문제를 해결하기 위한 LAMS와 EEC와 통신할 수 있는 메카니즘을 제안한다. 특히 이 기법은 LAMS에서 불가능한 다양한 외부 교육용 학습 자료를 편리하게 관리할 수 있고, 또한 평가와 같은 목적으로 만들어진 외부 교육용 콘텐츠를 교육적으로 활용하여 다양한 통계 자료 생성을 가능하게 한다. 따라서 제안된 통신 메카니즘을 통하여 LAMS를 이용하는 교수자가 보다 더 다양한 교육용 콘텐츠를 제작 관리할 수 있다.
최근 의류 등의 특정 쇼핑몰의 온라인 시장이 크게 확대되면서, 사용자의 리뷰를 활용하는 것이 주요한 마케팅 방안이 되었다. 이를 이용한 감성분석에 대한 연구들도 많이 진행되고 있다. 감성분석은 사용자의 리뷰를 긍정과 부정 그리고 필요에 따라서 중립으로 분류하는 방법이다. 이 방법은 크게 머신러닝 기반의 감성분석과 사전기반의 감성분석으로 나눌 수 있다. 머신러닝 기반의 감성분석은 사용자의 리뷰 데이터와 그에 대응하는 감성 라벨을 이용해서 분류 모델을 학습하는 방법이다. 감성분석 분야의 연구가 발전하면서 리뷰와 함께 제공되는 이미지나 영상 데이터 등을 함께 고려하여 학습하는 멀티모달 방식의 모델들이 연구되고 있다. 리뷰 데이터에서 제품의 카테고리와 사용자별로 사용되는 단어 등의 특징이 다르다. 따라서 본 논문에서는 리뷰데이터와 제품 정보를 동시에 고려하여 감성분석을 진행한다. 리뷰를 분류하는 모델로는 기본 순환신경망 구조에서 Gate 방식을 도입한 Gated Recurrent Unit(GRU), Long Short-Term Memory(LSTM) 그리고 Self Attention 기반의 Multi-head Attention 모델, Bidirectional Encoder Representation from Transformer(BERT)를 사용해서 각각 성능을 비교하였다. 제품 정보는 모두 동일한 Multi-Layer Perceptron(MLP) 모델을 이용하였다. 본 논문에서는 사용자 리뷰를 활용한 Baseline Classifier의 정보와 제품 정보를 활용한 MLP모델의 결과를 결합하는 방법을 제안하며 실제 데이터를 통해 성능의 우수함을 보인다.
본 연구는 '실행공동체로서의 과학교실(SCaCoP)'이 가지는 구조적 요인 간의 관계를 탐색하는 것을 목적으로 하였다. 이를 위해 초등과학 실험수업의 모둠활동을 5가지의 구조적 요인인, 학습책임감, 공동의 관심사, 개방적 참여, 호혜적 인간관계, 그리고 실행을 중심으로 살펴보았다. 자료 수집은 초등학교 과학교실의 5개의 모둠을 대상으로 5번의 수업관찰과 면담을 통해 이루어졌으며, 분석 결과는 다음과 같다. 첫째, 호혜적 인간관계는 개방적 참여의 필요조건으로 작용하고 있었다. 둘째, 학생들의 공동의 관심사 요인에는 '구성원들의 흥미'와 '수업의 주제'의 두 가지 차원이 나타났으며, 두 차원은 각각 개방적 참여 요인과 학습책임감 요인의 영향을 주고받았다. 셋째, 실행요인은 다른 요인들과 역동적인 관계를 맺으며 다른 요인들의 특징을 강화시켜주었다. 본 연구결과를 토대로 실행공동체로서의 과학교실이 가지는 구조적 요인 간의 관계를 제안하였으며, 이를 통해 학생들의 과학학습을 공동체에 참여로 보는 관점에서 가질 수 있는 시사점에 대해 논의하였다.
일반적인 지문 인식기에서 이용되는 미뉴셔 특징은 표현 공격에는 강건하지만 오 정합률이 상대적으로 높다는 약점이 있다. 따라서 미뉴셔 특징은 스켈리톤 영상과 함께 이용되는 경향이 있다. 보통 지문의 미뉴셔 특징에 대한 보안 취약성 연구는 많이 진행되어 있으나 스켈리톤에 대한 취약성 연구는 미약한 형편이므로 본 연구에서는 스켈리톤에 대한 표현 공격의 취약성을 분석하고자 한다. 이를 위해, 본 연구에서는 지문의 스켈리톤으로부터 학습 알고리즘을 사용해 원래의 지문을 복구하는 방법을 제시한다. 본 논문에서 제시된 방법은 기존의 Pix2Pix 모델에 잠재 벡터를 추가한 새로운 학습 모델인 Pix2Pix을 제안하여, 보다 자연스러운 지문을 생성한다. 본 논문의 실험 결과에서는 제시된 학습 알고리즘을 이용해 원래의 지문을 복원한 다음, 복원된 지문을 지문 인식기에 입력시켜 높은 인식률을 달성하였다. 그러므로 본 연구는 스켈리톤을 함께 이용하는 지문 인식기는 표현 공격에 취약함을 검증하였다. 본 논문에서 제시된 접근방법은 지문 인식 및 복원, 비디오 보안, 생체 인식 등과 연관된 많은 실제적인 응용 분야에서 유용하게 사용될 것으로 기대된다.
최근 얼굴 인식 기술과 하드웨어의 빠른 발전으로 인해 실시간 얼굴 검출이 가능한 다양한 어플리케이션이 제시되고 있다. 특히 네트워크의 발달과 영상 장비의 저 비용화로 IP 기반의 네트워크 감시 카메라와 얼굴 검출 기술을 이용한 스마트 감시 카메라의 요구와 저장된 감시카메라의 영상에서 얼굴 검출을 할 수 있는 스마트 감시 시스템의 요구가 증대되고 있다. 그러나 대부분의 감시 시스템은 네트워크 대역폭과 저장 용량을 감소시키기 위하여 영상을 압축하고 있다. 압축된 영상을 전부 디코딩 하고 모든 프레임에서 얼굴 검출을 하는 것은 시스템 성능 요구사항을 증대시키므로 압축된 영상을 이용한 빠른 얼굴 검출기법이 요구되고 있다. 본 논문은 기존의 Haar like features와 adaboost 학습기 등의 고속화된 얼굴 검출 알고리즘과 모션정보를 이용한 프레임 저감기법을 이용하여 압축된 프레임에서 고속으로 얼굴검출을 하는 방법을 제시하고 방송 응용분야에 대해 논의 하고자 한다.
Objectives: The purpose of this study was to develop and evaluate booklets and video clips to prevent children from picky eating. Methods: Based on a survey conducted on food preferences of preschool children aged 2 to 5 years, 14 kinds of less preferred vegetables were selected. Accordingly, educational videos, activity books, and teaching-learning guides were produced for preschool children using the 'food bridge' theory, and the educational materials were named "Friendly vegetables". Educational materials were distributed to childcare institutions, and their effectiveness was investigated for preschool children who were instructed on these materials once every 30 days from March to November, 2019. The children were examined for changes in their knowledge of names, colors, taste/texture, methods of cultivation, and preferences for vegetables before and after the instructional course. Results: The awareness of vegetables increased significantly in younger children and the picky eating group. When the assessment was carried out in terms of vegetable knowledge, it was observed that the younger the age or the pickier the in eating food, the more effective the education is compared to the counter part. The preference for vegetables also increased after the instruction compared to the pre-instruction period, but significant changes were seen only in the 2~3 year age group for boys and girls. Also, only the picky group of girls showed changes in preference. The children's average interest in the education materials was 3.85 points out of 5 points. Conclusions: Through this study, we have developed educational materials for standalone use in childcare facilities and confirmed that they have a significant effect on improving awareness and preferences related to vegetables. In summary, the younger the age or the pickier the child in eating food, the more effective the education. It is believed that additional education on mealtime guidance is needed which can alter the eating behavior of preschool children and improve their diet. It is proposed to widen the scope of use of the materials by collecting diverse opinions from child care teachers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.