• Title/Summary/Keyword: Vibrational modes

Search Result 121, Processing Time 0.025 seconds

Vibration analysis of double-walled carbon nanotubes based on Timoshenko beam theory and wave propagation approach

  • Emad Ghandourah;Muzamal Hussain;Amien Khadimallah;Abdulsalam Alhawsawi;Essam Mohammed Banoqitah;Mohamed R. Ali
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.521-525
    • /
    • 2023
  • This paper concerned with the vibration of double walled carbon nanotubes (CNTs) as continuum model based on Timoshenko-beam theory. The vibration solution obtained from Timoshenko-beam theory provides a better presentation of vibration structure of carbon nanotubes. The natural frequencies of double-walled CNTs against half axial wave mode are investigated. The frequency decreases on decreasing the half axial wave mode. The shape of frequency arcs is different for various lengths. It is observed that model has produced lowest results for C-F and highest for C-C. A large parametric study is performed to see the effect of half axial wave mode on frequencies of CNTs. This numerically vibration solution delivers a benchmark results for other techniques. The comparison of present model is exhibited with previous studies and good agreement is found.

Employing GDQ method for exploring undamped vibrational performance of CNT-reinforced porous coupled curved beam

  • Moein A. Ghandehari;Amir R. Masoodi
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.551-565
    • /
    • 2023
  • Coupled porous curved beams, due to their low weight and high flexibility, have many applications in engineering. This study investigates the vibration behavior of coupled porous curved beams in different boundary conditions. The system consists of two curved beams connected by a mid-layer of elastic springs. These beams are made of various materials, such as homogenous steel foam, and composite materials with PMMA (polymethyl methacrylate) and SWCNT (single-walled carbon nanotube) used as the matrix and nanofillers, respectively. To obtain equivalent material properties, the role of mixture (RoM) was employed, followed by the implementation of the porosity function. The system's governing equations were obtained by employing FSDT and Hamilton's law. To investigate thermal vibration, temperature was implemented as a load in the governing equations. The GDQ method was used to solve these equations. To demonstrate the applicability of the GDQ method in calculating the frequencies of the system and the correctness of the developed program, a validation study was conducted. After validation, numerous examples were presented to investigate the behavior of single and coupled curved beams in various material properties and boundary conditions. The results indicate that the frequencies of the curved beams and the system depend highly on the amount of porosity (n) and the distribution pattern. The system frequencies decreased with an increase in the porosity coefficient. The stiffness of the springs had no effect on the first mode frequency but increased frequencies of other modes in a specific range. The frequencies of the system decreased with an increase in environmental temperature.

An Experimental Study on the Vibration Response Characteristics of Floating Floor Systems for Heavyweight Impact Noise Reduction. (바닥충격음 차단을 위한 뜬바닥 구조의 진동응답특성에 관한 실험적 연구)

  • Choi, Kyung-Suk;Seok, Won-Kyun;Mauk, Ji-Wook;Shin, Yi-Seop;Kim, Hyung-Joon;Kim, Jeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.227-228
    • /
    • 2023
  • A floating floor generally consists of mortar bed separated from the structural RC slab by a continuous resilient layer. It is known that the floating floors are a type of vibration-isolation system to improve the impact sound insulation performance. However, some researchers have demonstrated that the amplification of vibration response at a specific range of frequencies results in an increase in the impact sound level. This study carried out the forced vibration tests to obtain the frequency response function (FRF) of a floating floor compared with a bare RC slab. Test results shows that the additional peak occur in vibrational spectrum of the floating floor except natural vibration modes of the bare RC slab. This is because the relatively flexible resilient material and mass of the mortar bed offer an additional degree of freedom in the structural system. Therefore, it could be efficient for reduction of floor impact vibration and noise to control the additional mode frequency and response of floating floors.

  • PDF

Controller Design and Validation of Radial Active Magnetic Bearing Systems Considering Dynamical Changes Due To Rotational Speeds (회전속도에 따른 동역학적 변화를 고려한 반경방향 능동 자기베어링 시스템의 제어기 설계 및 검증)

  • Jeong, Jin Hong;Yoo, Seong Yeol;Noh, Myounggyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.925-932
    • /
    • 2014
  • If a rotor possesses a high gyroscopic coupling or the running speed is high, the dynamical changes in the rotor become prominent. When active magnetic bearings are used to support such rotors, it is necessary for the bearing controller to take these dynamical changes into consideration. Independent-axis controllers, which are the most commonly used, modulate the bearing force solely based on the sensor output of the same axis. However, this type of controller has difficulties in overcoming the dynamical changes. On the other hand, mixed-axis controllers transform the sensor output into components corresponding to the vibrational modes. A separate controller can then be designed for each vibrational mode. In this way, the controller can be designed based on the dynamics of the rotor. In this paper, we describe a design process for a mixed-axis controller that uses a detailed mathematical model of the system. The performance of the controller is evaluated based on the ISO sensitivity requirements and unbalance response, while considering the change in the system dynamics due to the running speed.

Raman Spectroscopy Study on the Adsorption Orientation of Biphenylcarboxlic Acid Derivatives (라만 분광법을 이용한 Biphenylcarboxylic Acid 유도체들의 흡착 배향 연구)

  • Heay Ran Choi;Kyu Seok Choi;Il Ki Jung;Hong Seok Song;Keun Ok Han;Ho Seob Choi;Sang Hee Lee;Soo-Chang Yu
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.439-446
    • /
    • 2003
  • Surface-enhanced Raman(SER) spectroscopy was utilized to investigate the adorption orientation of the 4-biphenylcarboxylic acid(BPCA) derivatives, such as 4'-cyano-BPCA(c-BPCA), 4'-mercapto-BPCA(m-BPCA), and 4'-amino-BPCA(a-BPCA), which were adsorbed on Au and Ag colloid monolayers. For the systematic approach, information regarding the adsorption behavior of benzoic acid, biphenyl, and BPCA was applied to the target molecules. From the spectral behaviors of benzene ring, C-H stretching, carboxylate anion, and the other finger printing vibrational modes, it was concluded that only the m-BPCA was adsorbed tilt with thiol group being adsorbed on Au surface, whereas the other molecules were adsorbed flat on both Au and Ag surfaces.

Study on the In-Plane Vibration Characteristics of the Pneumatic Tires (공기압(空氣壓)타이어의 평면진동특성(平面振動特性)에 관(關)한 연구(硏究))

  • Kim, Nam Joen;Lee, Chong-Ho
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.9-15
    • /
    • 1987
  • The vibrational characteristics of a radial-ply (155SR13 4PR) and a biased-ply tire (6.15-134PR) were investigated for examining the effects of tires with different structure on the ride characteristics of the vehicle. The natural frequencies at the tread band, mode shapes, and damping factors of two tires at the state of plane vibration were determined experimentally. The test work was performed at four levels of the inflation pressure, ranging from 171.7 kPa to 245.2 kPa, and three levels of the vertical load, deviating by 10% from the standard load designated by the Department of Transportation of the United States of America. The following results were drawn by the analysis of the test results: 1. The first-order natural frequencies of the radial-ply and the biased-ply tires at the tread band were 112 Hz and 159 Hz, respectively, at the state o f the free vibration when the inflation pressure of 196.2 kPa was applied. It was known that the biased-ply tire has higher resonant frequency than the radial-ply tire and the natural frequencies of the both tires move to the high frequency range as t he inflation pressure is increased. 2. The vibration modes of both tires were quite different. No big difference in mode shapes was examined as the inflation pressure was increased. But the natural frequencies of two tires were changed. For the radial-ply tire, no difference in mode shape was found whether the vertical load was applied or not. But a significant difference in mode shape was examined for the biased-ply tire. 3. Any difference was not found in damping factor as the different inflation pressures were applied. 4. When no vertical load was applied, damping factors of the radial-ply and biased-ply tire at the state of the natural vibration ranged from 2.6 to 5.9%, and from 4.1 to 7.8%, respectively. It was estimated that the radial-ply tire would have better cushioning than the biased-ply tire since the vertical spring rate of the radial-ply tire was much less than that of the biased-ply tire, even though the damping effect of the radial-ply tire was smaller than that of the biased-ply tire.

  • PDF

Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy

  • Kim, Hyeong-Mook;Park, Jaeheung;Noh, Hee Chang;Lim, Manho;Chung, Young Keun;Kang, Youn K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.587-596
    • /
    • 2014
  • A new ${\pi}$-stacked donor-acceptor (D-A) system, [Ru(1-([2,2'-bipyridine]-6-yl-methyl)-3-(2-cyclohexa-2',5'-diene-1,4-dionyl)-1H-imidazole)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (ImQ_T), has been synthesized and characterized. Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2"-terpyridine)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (TQ_T), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through ${\pi}$-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitals-to-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and $Q^-$ state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.

Identification of a Radical Decomposition Pathway(s) of Polycyclic Aromatic Hydrocarbon by the Vibrational Frequency Calculations with DFT Method (DFT법에 의한 진동 운동 진동수 계산을 통한 다고리 방향족 탄화수소의 라디칼 분해 경로 동정)

  • Lee, Byung-Dae;Ha, Kwanga;Lee, Min-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.344-351
    • /
    • 2018
  • The IR spectra of gaseous phenanthrene, phenathrenols, phenanthrenyl radicals, and hydroxylphenanthrene radicals have been obtained using the BLYP/6-311++G(d,p) method. A comparison of these spectra shows that the measurements of IR spectra can be valuable to identify the reaction pathway(s) of the phenanthrene decomposition reaction by ${\cdot}OH$. We have found that the H atom abstraction reaction process can be easily identifiable from the $650-850cm^{-1}$ (CH out-of-plane bending) region and the ${\cdot}OH$ addition reaction process from the CH stretching and bending modes region of IR spectra. In addition, the calculated IR spectra of all five phenanthren-n-ols (n = 1, 2, 3, 4, 9) have also given in this work.

Effects of Transverse Shear Deformation and Rotary Inertia on Vibration of Rotating Polar Orthotropic Disks (극직교 이방성 회전원판의 진동에 대한 횡전단변형 및 회전관성 효과)

  • Kim, Dong-Hyun;Koo, Kyo-Nam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Dynamic instability of rotating disks is the most significant factor to limit its rotating speed. Application of composite materials to rotating disks may enhance the dynamic stability leading to a possible design of rotating disks with lightweight and high speed. Whereas much work has been done on the effect of transverse shear and rotary inertia, called Timoshenko effect, on the dynamic behavior of plates, there is little work on the correlation between the effect and the rotation of disk, especially nothing in case of composite disks. The dynamic equations of a rotating composite disk are formulated with the Timoshenko effect and the vibrational analysis is performed by using a commercial package MSC/NASTRAN. According to the results, the Timoshenko effect goes seesaw in some modes, unlike the well-known fact that the effect decreases as the rotating speed increases. And it can be concluded, based only on the present results, that decrement of the Timoshenko effect by disk rotation grows larger as the thickness ratio decreases, the diameter ratio increases, the modulus ratio increases, and the mode number increases.

New Design and Application of PVDF Ultrasonic Transducer for Measurement of Material Properties (재료물성 측정을 위한 직선집속 PVDF 초음파 트랜스듀서의 새로운 설계 및 응용)

  • Hong Soung-Wook;Kim Jung-Soon;Kim Sang-Yoon;Kim Moo-Joon;Ha Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.164-171
    • /
    • 2006
  • If the velocities of longitudinal, transverse and leaky surface acoustic waves in an isotropic material are given, the elastic constants and density of the material can be deduced analytically. Those velocities have been measured using three ultrasonic transducers with different vibrational modes so far. In this paper a line-focusing PVDF transducer with divided electrodes was newly proposed and designed for measuring approximate velocities of the three waves. The measurement method established in this study for each waves using the transducer was applied to several isotropic materials including fused quartz. The elastic stiffness constants and densities of the materials were calculated using the measured velocities, and the accuracies were discussed. It was shown that the obtained results are in good accord with the reference values.