Browse > Article
http://dx.doi.org/10.5012/jkcs.2018.62.5.344

Identification of a Radical Decomposition Pathway(s) of Polycyclic Aromatic Hydrocarbon by the Vibrational Frequency Calculations with DFT Method  

Lee, Byung-Dae (Department of Health, Uiduk University)
Ha, Kwanga (Changwon-Nam High School)
Lee, Min-Joo (Department of Biology and Chemistry, Changwon National University)
Publication Information
Abstract
The IR spectra of gaseous phenanthrene, phenathrenols, phenanthrenyl radicals, and hydroxylphenanthrene radicals have been obtained using the BLYP/6-311++G(d,p) method. A comparison of these spectra shows that the measurements of IR spectra can be valuable to identify the reaction pathway(s) of the phenanthrene decomposition reaction by ${\cdot}OH$. We have found that the H atom abstraction reaction process can be easily identifiable from the $650-850cm^{-1}$ (CH out-of-plane bending) region and the ${\cdot}OH$ addition reaction process from the CH stretching and bending modes region of IR spectra. In addition, the calculated IR spectra of all five phenanthren-n-ols (n = 1, 2, 3, 4, 9) have also given in this work.
Keywords
Polycyclic aromatic hydrocarbon; Phenanthrene; Degradation pathway(s); H atom abstraction; ${\cdot}OH$ addition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wallace, S. J.; de Solla, S. R.; Thomas, P. J.; Harner T.; Eng, A.; Langlois, V. S. Ecotox. Environ. Safe. 2018, 150, 176.   DOI
2 Shimada, T. Toxicol. Res. 2017, 33, 79.   DOI
3 Lui, K. H.; Bandowe, B. A. M.; Tian, L.; Chan, C.-S.; Cao, J.-J.; Ning, Z.; Lee, S. C.; Ho, K. F. Chemosphere 2017, 169, 660.   DOI
4 Kamiya, Y.; Kameda, T.; Ohura, T.; Thono, S. Polycycl. Aromat. Comp. 2017, 37, 128.   DOI
5 Lee, M.-J.; Lee, B.-D. Tetrahedron Lett. 2010, 51, 3782.   DOI
6 Lorenz, K.; Zellner, R. Ber. Bunsenges. Physik. Chem. 1983, 87, 629.   DOI
7 Atkinson, R.; Arey, J.; Zielinska, B.; Aschmann, S. M. Environ. Sci. Technol. 1987, 21, 1014.   DOI
8 Tokmakov, I. V.; Lin, M. C. J. Phys. Chem. A 2002, 106, 11309.   DOI
9 Goulay, F.; Rebrion-Rowe, C.; Le Garrec, J. L.; Le Picard, S. D.; Canosa, A.; Rowe, B. R. J. Chem. Phys. 2005, 122, 104308.   DOI
10 Ananthula, R.; Yamada, T.; Taylor, P. H. J. Phys. Chem. A 2006, 110, 3559.   DOI
11 Park, S. S.; Kim, Y. J.; Kang, C. H.; Cho, S. Y.; Kim, T. Y.; Kim, S. J. J. Korean Soc. Atmos. Environ. 2006, 22, 57.
12 Lee, M.-D.; Kim, S.-Y.; Lim, Y.-J.; Seo, S.-J.; Kim, Y.-H.; Cho, K.-C. J. Korean Soc. Environ. Adm. 2010, 16, 17.
13 Helming, D.; Harger, W. P. Sci. Total Environ. 1994, 148, 11.   DOI
14 Wang, L.; Atkinson, R.; Arey, J. Atmos. Environ. 2007, 41, 2025.   DOI
15 Tommasini, M.; Lucotti, A.; Alfe, M.; Ciajolo, A.; Zerbi, G. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2016, 152, 134.   DOI
16 Zhang, Y.; Yang, B.; Meng, J.; Gao, S.; Dong, X.; Shu, J. Atmos. Environ. 2010, 44, 697.   DOI
17 Atkinson, R. Chem. Rev. 1985, 85, 69.
18 Berckholtz, C.; Berckholtz, T. A.; Hadad, C. M. J. Phys. Chem. A 2001, 105, 140.
19 Choo, J.; Han, S. J.; Choi, Y. S. Bull. Korean Chem. Soc. 1997, 10, 1076.
20 Lee, J.; Lane, D. A. Atmos. Environ. 2010, 44, 2469.   DOI
21 Frisch, M. J.; et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, USA, 2013.
22 Dennington, R.; Keith, T.; Millam, J. GaussView 5.0, Semichem Inc., Shawnee Mission, Kansas, USA, 2009.
23 Zhao, N.; Zhang, Q.; Wang, W. Sci. Total Environ. 2016, 563, 1008.