• Title/Summary/Keyword: Vibration Method

Search Result 8,847, Processing Time 0.033 seconds

Vibration Analysis of Discharge Pipe with Fluid Pulsation in a Rotary Compressor (유체 맥동을 고려한 압축기 토출 배관의 진동 응답 해석)

  • 서영수;정의봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1049-1054
    • /
    • 2002
  • Fluid Pulsation in pipe usually cause several forces and these forces make mechanical vibration and noise. Protecting pipe from mechanical vibration is very important problem because vibration make pipe damage and break. To analyze pipe, we must formulate both the fluid pulsation force and vibration of pipe. In this paper fluid force from pulsation is modeled by Fluid Dynamics and solved by FEM(finite element method). The discharge pipe is also modeled by the FEM with use of 6 dof beam model. The acceleration of discharge pipe is estimated by the suggested method in this paper. The comparision of estimated results with experimental results show good agreement, which verified the validation of this method

  • PDF

Dynamic Modulation Transfer Function Analysis of Images Blurred by Sinusoidal Vibration

  • Du, Yanlu;Ding, Yalin;Xu, Yongsen;Sun, Chongshang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.762-769
    • /
    • 2016
  • The dynamic modulation transfer function (MTF) for image degradation caused by sinusoidal vibration is formulated based on a Bessel function of the first kind. The presented method makes it possible to obtain an analytical MTF expression derived for arbitrary frequency sinusoidal vibration. The error obtained by the use of finite order sum approximations instead of infinite sums is investigated in detail. Dynamic MTF exhibits a stronger random behavior for low frequency vibration than high frequency vibration. The calculated MTFs agree well with the measured MTFs with the slant edge method in imaging experiments. With the proposed formula, allowable amplitudes of any frequency vibration are easily calculated. This is practical for the analysis and design of the line-of-sight stabilization system in the remote sensing camera.

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads

  • Lee, Sinyeob;Kim, Dongkyu;Ahn, Sangkeun;Park, Junhong
    • International Journal of Railway
    • /
    • v.6 no.4
    • /
    • pp.155-159
    • /
    • 2013
  • The purpose of this study was to develop a theoretical model to analyze the vibration of finite railways forced by distributed moving loads. The vibration characteristics of compliantly supported beam utilizing compressional damping model were investigated through the Rayleigh-Ritz method. The distributed moving load was analyzed as the cross correlation function on railways. This allowed the use of statistical characteristics for simulation of the moving train wheels on the rail. The results showed there is a critical velocity inducing resonant vibration of the rail. The mass spring resonance from the rail fastening systems exhibited significant influence on the resulting vibration response. In particular, the effect of the viscoelastic core damping was investigated as an efficient method for minimizing rail vibration. The decrease of the averaged vibration and rolling noise generation by the damping core was maximized at the mass-stiffness-mass resonance frequency.

Evaluation of Tension Force of Stay Cables Using Vibration Method (진동법을 이용한 인장 케이블의 장력 추정에 관한 연구)

  • Kim, Nam-Sik;Jeong, Woon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.956-963
    • /
    • 2002
  • In a recent construction industry, cable supported structures such as a cable-stayed bridge or space stadium have been increasingly constructed according to rapidly upgrade their related technologies. Generally stay cables as a critical member need to be rearranged for being satisfied with design tension forces. In this purpose, a vibration method has been applied to estimate the tension forces exerted on existing stay cables. In this study, cable vibration tests were tarried out to evaluate the cable tension forces comparing with theoretical and practical formulas. Using the measured frequencies obtained from free vibration and Impulsive tests, an accuracy of the estimated tension forces is confirmed according to use the first single mode only or higher multiple modes.

A Study on the Vibration Control of the Slab Using the Viscoelastic Material (점탄성 소재를 이용한 바닥판의 진동저감에 관한 연구)

  • Kim, Soo-Jin;Hwang, Jae-Seung;Kim, Hong-Jin;Kim, Do-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.526-529
    • /
    • 2005
  • Attempts have been applied to reduce the vibration of slab. There are several method in the vibration control of slab from a traditional method such as increment of mass or stiffness of slab to a innovative method augmenting damping of slab. In this study, a attempt has been made to increase the effective damping in slab using the viscoelastic dampers made of viscoelastic material. The dampers are installed in a gab between slab and a beam. It is assumed that the stiffness of the beam is infinity for simplicity of the evaluation. we evaluate the reduction effect of the slab selected through numerical simulation and optimization process by applying it to a FEM model. The numerical simulation shows that the effective damping is increased as the number of bean is increased and the vibration control effect is very high.

  • PDF

A Study on the Optimum Layout Design of Resilient Mounts for Shock & Vibration Isolation (충격/진동 절연을 위한 탄성마운트의 최적 배치설계)

  • 박주현;정정훈;김기화;조대승;김병현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.755-760
    • /
    • 2001
  • Major equipment of combat vessels normally require the shock and vibration isolation to maintain its performance against environments of severe vibration and shock. In this paper, an optimal layout design method of resilient mounts for shock and vibration isolation is presented using simulated annealing optimization method. The reference levels of vibration and shock to isolate shipboard equipment are determined from the MIL-STD-167-1 and MIL-S-901 specifications. Through the numerical application, the validity of the presented method is investigated.

  • PDF

A Study on the Transient Torsional Vibration of 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 과도비틀림진동에 관한 연구)

  • Lee, D. C.;J. D. Yu;H. J. Jeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.312.2-312
    • /
    • 2002
  • Theoretical analysis of transient torsional vibration was started from early 1960's for high power synchronous motor application. Especially, its simulation and measuring techniques in marine engineering field have been steadily studied by manufacturers of flexible coupling and designers of four stroke marine diesel engine. In this paper, the simulation method of transient torsional vibration of four stroke marine diesel engine using the Newmark method are introduced. (omitted)

  • PDF

Residual Vibration Suppression of a Beam-Mass-Cart System by Input Reshaping with a Robust Inernal-loop Compensator (강인한 내부 루프 보상기를 입력성형법에 의한 유연보-부하-대차 시스템의 잔류진동 억제)

  • Park, Sangdeok;Kim, Bong-Keun;Chung, Wan-Kyun;Yeom, Yeong-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.198-208
    • /
    • 2001
  • In this paper, vibration suppression of an elastic beam fixed on a moving cart and carrying a fixed or moving mass is considered. A modified pulse sequence method with RIC(Robust Internal-loop Compensator) is proposed to suppress the single model residual vibration and to get accurate positioning of the beam-mass-cart system. The performance of the proposed input preshaping method is compared with that of the previous ones through simulations and experiments. Using the proposed method, it is able to suppress the initial vibration of the beam-mass-cart system carrying a concentrated mass. Accurate PTP(point-to-point) positioning of the moving mass without residual vibration is also obtained experimentally by modifying the proposed pulse sequence method. Finally, the proposed input preshaping method is applied successfully to the system to follow square trajectories of the moving mass without residual vibration.

  • PDF

Low-frequency Vibration Suppression Control in a Two-mass System by Using a Torque Feed-forward and Disturbance Torque Observer

  • Li, Qiong;Xu, Qiang;Wu, Ren
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.249-258
    • /
    • 2016
  • Given that elastic connection is often used between motor drives and load devices in industrial applications, vibration often occurs at the load side. Vibration suppression is a crucial problem that needs to be addressed to achieve a high-performance servo-control system. Scholars have presented many strategies to suppress vibration. In this study, we propose a method to diminish vibration by using a torque feed-forward and disturbance torque observer. We analyze the system performance and explain the principle of the proposed vibration suppression method based on the transfer functions of the system. The design of controller parameters is another important issue in practical applications. We accordingly provide a succinct outline of the design specifications based on the coefficient diagram method. Furthermore, we build a model under the Simulink environment and conduct experiments to validate the proposed method. Results show that speed and position vibrations are successfully suppressed by the proposed method.

In-Plane Free Vibration Analysis of Plates (평판의 면내 자유진동 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun;Byun, Jung-Hwan;Jang, Duck-Jong;Moon, Deok-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.291-296
    • /
    • 2007
  • To analyze accurately the free vibration of a structure by using the finite element method (FEM), we model the structure as a numerical model with many degrees-of-freedom. However the FEM needs much computation time and storage in this case. The authors developed the finite element-transfer stiffness coefficient method (FE-TSCM) for overcoming the drawback of the FEM. In this paper, the authors apply the FE-TSCM to the in-plane free vibration analysis of plates with various shapes. Two numerical examples, a rectangular plate and a triangular plate, are used to compare the results of the FE-TSCM and the FEM. Through the numerical calculation, we confirm that the FE-TSCM can be applied to the plates with various shapes and is effective to in-plane free vibration analysis of plates.

  • PDF