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Abstract 

 

Given that elastic connection is often used between motor drives and load devices in industrial applications, vibration often occurs 
at the load side. Vibration suppression is a crucial problem that needs to be addressed to achieve a high-performance servo-control 
system. Scholars have presented many strategies to suppress vibration. In this study, we propose a method to diminish vibration by 
using a torque feed-forward and disturbance torque observer. We analyze the system performance and explain the principle of the 
proposed vibration suppression method based on the transfer functions of the system. The design of controller parameters is 
another important issue in practical applications. We accordingly provide a succinct outline of the design specifications based on 
the coefficient diagram method. Furthermore, we build a model under the Simulink environment and conduct experiments to 
validate the proposed method. Results show that speed and position vibrations are successfully suppressed by the proposed 
method.  
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I. INTRODUCTION 

In practical industrial applications, shaft couplings are often 
used in mechanical transmission devices. However, these 
elastic connections may cause mechanical resonance that 
severely deteriorates the performance of controllers and 
induces speed and position vibrations in the control system. 
Therefore, mechanical resonance in servo drive systems is a 
crucial problem that needs to be addressed to achieve 
high-dynamic and high-precision responses for modern 
servo-control systems.  

Many methods are proposed to suppress the vibration in 
two-inertia systems. A μ-synthesis with a descriptor form 
representation is described; its use can achieve strong 
robustness and vibration suppression [1]. A modified 
speed-loop controller is presented to improve the performance 
of present speed controllers [2]. Various controller structures 

are elucidated to reduce torsional vibration, and relative 
controller parameters are designed according to the inertia ratio 
and the phase lag in speed loop [3]. A common approximator 
using a radical basis function network is applied to the speed 
loop to weaken the vibration [4]. Unlike the traditional 
disturbance observer, this method features self-tuning 
capability. Self-adapting fuzzy control can also be utilized to 
reduce torsional vibration. A neural network is applied to 
reconcile load speed and torsional torque to decrease the 
vibration in a two-inertia system [5]. A method based on a 
sliding-mode fuzzy controller is also applied to suppress the 
vibration in a two-inertia system [6]. Saarakkala proposed a 
model-based two-degrees-of-freedom state-space 
speed-controller design for a two-mass mechanical system [18] 
and presented a discrete-time polynomial method for parameter 
identification of two-mass mechanical loads [19]. An 
immersion and invariance approach is applied to suppress the 
vibration in two-mass systems [20]. A fuzzy Luenberger 
observer to ensure that fitting observer closed-loop poles is 
used for a system with flexible joint [21]. Jong-Sun Ko 
presented a neural-load torque compensation method to obtain 
good precision position control [22].  

The design of controller parameters is also an important  
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Fig. 1. CDM block diagram. 
 
topic. Complex controllers are generally of high order [7], [8]. 
However, low-order controllers are more practical in industrial 
applications. The parameters of high-order controllers are 
difficult to tune. Therefore, a simple and reliable way to design 
controller parameters will be useful for practical applications. 

Traditional and modern control theories for the design of 
controller parameters are well known. The polynomial method 
is another approach to finding approximate parameters for 
controllers. This method is actually an algebraic design method 
that uses polynomial expressions. According to the order of the 
transfer functions of a closed-loop control system and its 
characteristic polynomial, the coefficients of the controller and 
polynomial can be calculated by some specifications. Naslin 
studied the relationship between characteristic ratio and system 
response in the 1940s [9]. Manabe made a further contribution 
by proposing the coefficient diagram method (CDM) based on 
Naslin’s theory. CDM successfully solves many controller 
design problems in practical applications. In this study, we 
select the CDM to design controller parameters. 

This study aims to develop a strategy to suppress the 
vibration in a two-inertia system and to find a simple and 
reliable way to design controller parameters. The entire system 
is expected to have fast response and strong robustness by 
using the proposed method. Theoretical analysis, simulation, 
and experimental results are presented to verify the proposed 
method. 

 

II. PRELIMINARIES 

Fig. 1 shows the standard single-input single-output block 
diagram of CDM, where Ac(s), Br(s), and Bf (s) are the 
controller polynomials; yr, u, d, and n are the input reference, 
the control, the disturbance, and the measurement noise 
variables, respectively. The plant to be controlled is 
represented by G(s) transfer function given by 

       )(/)()( sAsBsG pp .         (1) 

The command and feedback transfer functions of the 
controller Gc(s) and Gf (s) are expressed in the following forms: 

        )()()( 1 sBsAsG ccc
         (2a) 

        )()()( 1 sBsAsG fcf
         (2b) 

In this study, P(s) is the characteristic polynomial of the 
closed-loop system given by 

    )()()()()( sBsBsAsAsP pfpc         (3) 

Given that only three components Ac(s), Br(s), Bf (s) are to 
be designed, only three transfer functions are needed for 
design. Based on the CDM, the following equations are 
selected as standard [10]: 

( ) ( ) ( )p c rP s y B s B s y         (4a) 

( ) ( ) ( )p cP s y B s A s d         (4b) 

( )( ) ( ) ( )f pP s u B s B s d          (4c) 
Equ. (4a) determines the command-response characteristics. 

Equ. (4b) is for the disturbance rejection characteristics. Equ. 
(4c) is used to check the robustness. Thus, the three basic 
equations are taken as system performance specifications in 
the CDM design. The design of P(s) can satisfy the 
requirements on Equs. (4b) and (4c), and Br(s) is tuned to 
satisfy the specification on Equ. (4a). 

We explain the CDM design procedure as follows. Some 
mathematical relations are first described. The general form 
of P(s) is given by 
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The CDM has two design parameters with respect to 
characteristic polynomial coefficients; these parameters are 

the equivalent time constant  and the stability index i . 

The relations among  , i , and ai are given by 

   01 aa                (6a) 
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2   niaaa iiii       (6b) 

[11] stated that “the system of any order can stay stable if 
all the 4th order polynomials are stable with the margin of 
1.12.” Hence, the design guides for stability are obtained as 
follows: 
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    (7) 

In the CDM, the stability indices are recommended as 

follows [12], [13]: 

       2,5.2 2211    nn .       (8) 

We then design Ac(s) and Bf (s) based on Equ. (8). The 
denominator Ap(s) and the numerator Bp(s) polynomials can 
be denoted as 
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Controller polynomials are given by 
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Fig. 2. (a) Mechanical model diagram of a two-inertia system. (b) 
Classical speed-control diagram of a two-mass system. 
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Fig. 3. Response frequency of a two-inertia system. 
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where ai, bi, and ci parameters are known. Thus, li and ki can 
be calculated. Given that Br(s) is adjusted to satisfy 
command-response characteristics, we can design it based on 
practical conditions, as in section IV. B. 

 

III. MATHEMATICAL MODEL OF A TWO-INERTIA 
SYSTEM 

Fig. 2(a) shows the diagram of a two-inertia system. Fig. 
2(b) describes the classical speed-loop-control diagram of a 
two-inertia system. The definitions of the corresponding 
parameters are as follows: 
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The state equations of the two-inertia system can be 
written as follows: 
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The damping losses assumed to be small can be neglected 
without affecting the precision of the following analysis 
significantly. The transfer functions HLM(s), HMM(s), and 
HRM(s) are as follows: 
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where )(s  is the characteristic polynomial given by  
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With further simplification of the above equations, HLM(s) 
and HMM(s) can be rewritten as 
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where res  and ant are the resonance frequency and the 

anti-resonance frequency, respectively, defined as 
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Based on Equs. (16) and (17), the increment in the motor 
inertia decreases the resonance frequency, whereas it has no 
influence on the anti-resonance frequency. The system 
performance is seriously damped at the anti-resonance  
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Fig. 4. Diagram of the proposed control strategy for a two-inertia 
system. 
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Fig. 5. Disturbance observer. 
 
frequency and has a resonance peak at the resonance 
frequency. The details from the frequency response of a 
two-inertia system are presented in Fig. 3. The high gain at 
the resonance point essentially causes position and speed 
vibrations. Hence, a method to offset the resonance peak can 
suppress vibrations.  

 

IV. VIBRATION SUPPRESSION DESIGN 

In this section, a method based on a torque feed-forward 
and disturbance torque observer to suppress the 
low-frequency vibrations in a two-mass system is proposed. 
The schematic of the proposed method is shown in Fig. 4. 
The torque feed-forward compensation is derived from the 
speed reference, and the disturbance torque observer adopts a 
low-order observer to estimate the disturbance torque. 

The following sections describe the proposed method and 
the design of controller parameters in detail. 

A. Disturbance Observer  

Disturbance observer is applied to obtain a robust control 
system. In this study, we apply a low-order Luenberger 
observer to estimate the disturbance torque. For simplicity, 
Fig. 5 shows the principle of the proposed disturbance 
compensation method. According to Fig. 5, we can obtain the 

transfer function between LT  and m as Equ. (18). 

Compared with the transfer function under the traditional 
proportional–integral (PI) control, which is denoted by Equ. 
(19), Equ. (18) equals Equ. (19) multiplied by s2/(2ks + k2 − 
s2). s2/(2ks + k2 − s2) has high-pass filter features. Thus, 
disturbance torque is seriously damped under the frequency  
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k(rad/s). Similarly, the influence of measurement noise on the 
disturbance observer is damped by a low-pass filter factor 
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control, that is, Equs. (20) and (21). Therefore, the effect of 
high-frequency noise can be diminished. 
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According to Equs. (18)-(20), a large k is helpful for 
disturbance rejection, whereas a small k can improve the 
capability of measurement noise rejection. Accordingly, k is 
determined by considering both Equs. (18) and (20). When 

the system cut-off frequency is near )(/ mpT JKK  , we 

recommend that k be not larger than )(/ mpT JKK  . 

B. Parameter Design of Feed-forward Compensator 

Calculating torque feed-forward compensation by a 
classical derivative is usually used. However, classical 
differentiation is sensitive to noise, thereby limiting its 
practical application. In this study, we apply Equ. (22) to 
obtain the torque feed-forward value. We assume that the 

cut-off frequency is cf  and the gain is GK .  



Low-frequency Vibration Suppression …                                 253 

 

)(sGcf

)(sGv )(sHRM )(

)(

sH

sH

RM

LM

)(

)(

sH

sH

LM

MM

)(sm

)(sc

)(sTm )(sTr

)(sL

+

-

+
+

)(sTd

+

-

 
Fig. 7. Control structure of a two-mass system. 
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Fig. 6 shows the frequency response of Equ. (22). From 
Fig. 6, the response characteristics of Equ. (22) are 
compatible to the process signals that contain a certain 
frequency.  

The feed-forward compensator procedure is explained 
hereafter. For simplicity, the transfer function of current loop 
equals 1 because of the high bandwidth of the current loop, 
and we assume that DM = DL = 0. The block diagram of 
transfer functions is shown in Fig. 7. Given the design of the 
disturbance observer in section A, we neglect this part to 
reduce computational effort. 

From Fig. 7, the motor speed, the torsional torque, and the 
electrical torque are represented as 
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The transfer functions from the reference speed to the 
motor speed, from the motor speed to the load torque, the 
electrical torque to the reference speed, and the torsional 
torque to the reference speed are described as 
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 Thus, the characteristic polynomial can be derived from the 
above equations. 
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In this section, the CDM that is previously discussed is 
applied to design control parameters. 

According to the discussion in [17], 2i  is defined 

for all i = 1,2,...n-1, the step response overshoot is ensured to 

be small, and a large i  leads to great damping. The 

conclusion can be applied to realize the damping at the 

resonant frequency by setting an appropriate i . Compared 

with all-pole systems, two-inertia systems require a 

particularly large 1  because the characteristic ratios with a 

low index i have an advantageous effect on 
frequency-domain specifications. Thus, according to the 

CDM report, 2,5.2 2211    nn  is 

recommended considering rapid response and robustness. 
The elimination of Equ. (24) by Equ. (6b) is thus expressed 
as 
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The basic idea of the design of Gcf (s) is to offset the 
resonance peak of the command response at the resonance 
point. According to Fig. 7, we can derive that the transfer 

function between c  and L
relates to Equ. (26a).  
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To decrease the gain at the resonance point, the magnitude 
of the numerator of Equ. (26a) should equal the magnitude of 
the denominator as much as possible, that is, Equ. (26b). 
Therefore, Equ. (27) should be satisfied. 
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When Kp and KI are known, cf  and KG can be calculated 

based on Equ. (27). In this study, we use the simulation 
parameters in Table I to verify the availability of the design 
specifications, that is, Equs. (25) and (27). According to 

Table I, 128 / , 141 /ant resrad s rad s   . The controller 

parameters calculated by Equs. (25)–(27) are shown in Table 
II. The elimination of Equ. (26) by the parameters in Tables I 
and II derives the bode diagrams of the command response 
and the disturbance torque response, as shown in Fig. 8. Fig. 
8(a) shows the speed frequency response difference between 
the proposed method and the classical PI control. On the one 
hand, the command response gain of the classical PI 
controller (+15 db) is higher than the gain of the proposed  
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TABLE I 
SIMULATION PARAMETERS 

Parameter Value Unit 

mJ  8e-3 Kg.m2 

LJ  2.3e-3 Kg.m2 

mD  0.002 N.m/rad 

LD  0.002 N.m/rad 

TK  1 N.m/A 

sK  39.2 N.m/rad 

 

TABLE II 
DESIGNED PARAMETERS 

Parameter Value Unit 

pK  0.4 rad/s 

IK  14 rad/s2 

k  50 rad/s 

cf  
123 rad 

GK  −138 N.m/rad 

ant  114 rad 
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Fig. 8. (a) Bode diagram of the speed frequency response. (b) 
Bode diagram of the disturbance frequency response. 

method (−9 db) at the resonance frequency. On the other 
hand, the magnitude of the disturbance frequency response 
with the proposed method (−12 db) is smaller than that 
(−3 db) with the classical PI control at the resonance point.  

In conclusion, the bode diagrams of the command response 
and the disturbance response imply the principle of vibration 
suppression of the proposed method. 

 

V. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation  

Simulations of the PI controller, the PI + disturbance 
observer controller, and the proposed method controller are 
conducted. The simulation parameters are the same as those 
in Table I. 

Figs. 9(a)-9(d) show the load speed response, the torsional 
torque response, the disturbance response, and the position 
tracking response with three different control systems, 
respectively. From the curves in Fig. 9(a), a large overshoot 
(55%) can be found with the PI controller. The vibration in 
speed lasts for 4 cycles to 5 cycles. The disturbance observer 
can reduce the vibration (3 cycles) and overshoot (45%), but 
its performance is not as good as that of the approach 
proposed in this study. The overshoot is only 12%, and the 
vibration is almost completely suppressed with the proposed 
method. The results in Fig. 9(b) indicate that torsional torque 
is remarkably suppressed by the proposed method, whereas 
vibration remains for a long time both in the PI controller and 
the PI + disturbance observer. Fig. 9(c) shows that the 
disturbance rejection with the PI controller is not as good as 
those with the other two ways. This result is consistent with 
the bode diagram in Fig. 8(b). The proposed method has the 
same disturbance response as the PI + disturbance torque 
observer because the command torque compensator has no 
effect on the disturbance rejection capability. Fig. 9(d) 
describes that the proposed method performs best. The 
proposed method effectively suppresses vibration and 
shortens the positioning time in contrast to the PI controller 
and the PI + disturbance torque observer. 

B. Experimental Results 

A general picture of the proposed control algorithm is 
illustrated in Fig. 10 to validate the proposed method. The 
experimental platform is set up as in Fig. 11. The platform 
consists of a permanent-magnet synchronous motor (PMSM), 
a servo driver, a ball screw, and a coupling device, among 
others. The PMSM parameters are shown in Table III.  

The software algorithm of the drive system is designed 
based on STM32f407. The three different control systems in 
section V. A are tested for further comparison. The command 
speed is given in Fig. 12. 

When the motor outputs the positioning signal, the 
sampling of command torque, motor feedback speed, and 
position error begins. Results are shown in Figs. 13-17. The 
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Fig. 9. (a) Speed response under three different control systems. (b) Torsional torque under three different control systems. (c) 
Disturbance response under three different control systems. (d) Position tracking under three different control systems. 
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Fig. 10. Diagram of the software control unit. 

 
three signals from up to down are command torque, motor 
feedback speed, and position error, respectively. From Fig. 13, 
the vibrations in position, torque, and speed last for a long 

time ( mst 125 ) with the PI controller. Fig. 14 shows that  

 
Fig. 11. Experimental platform. 

 
the disturbance observer suppresses the vibration to a certain 
extent, but its performance is not as promising as the 
proposed method in Fig. 15. The vibration with the proposed 
method in Fig. 15 is nearly suppressed, and the positioning 

time is only mst 69 . These experimental results have the 
same tendency as the simulation results. Disturbance  
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TABLE III 
PMSM PARAMETERS 

Paramater Value Unit 

NV  220 v 
NP  400 w 

mJ  0.027 × 10−3 Kg.m2 
NI  2.0 A 

Nn  3000 r/min 

NT  1.27 N.m 
 

Speed_ref
(r/min)

t(ms)100 500             600

300

Output positoned 
signal  and triggers 

sample

0

 
Fig. 12. Command speed wave. 
 

 
Fig. 13. Results of the PI controller. 

 

 
Fig. 14. Results of the disturbance torque observer. 

 
Fig. 15. Results of the proposed method. 
 

 
Fig. 16. Disturbance experimental results of the PI controller. 
 

 

Fig. 17. Disturbance experimental results of the proposed 
method. 
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rejection experiments are also performed. We apply 
inconsiderable disturbance torque on the load side suddenly 
after the fixing position. The experimental results are 
described in Figs. 16 and 17. Fig. 16 shows that, with the PI 
controller, the torque, speed, and position vibrate because of 
the disturbance. By contrast, the corresponding signals 
rapidly return to the stable value with the proposed method in 
Fig. 17. This result is in accordance with the simulation 
results in Fig. 9(c). In conclusion, the proposed method 
performs better than the PI controller in command response 
and has better disturbance rejection capability.  
 

VI. CONCLUSION 

Vibration suppression is crucial for industrial applications. 
This paper presents a vibration suppression strategy based on 
torque feed-forward compensation and disturbance observer 
for a two-mass system. The control parameters IP KK , and 

Gcf K, are designed by using a few system parameters 

( sLm KJJ ,, ) based on the CDM. A low-order Luenberger 

disturbance observer is applied to improve the disturbance 
rejection capability. The parameters of the disturbance 
observer are designed by analyzing the transfer function 
between motor speed and disturbance torque. We also 
analyze the transfer functions between load speed and speed 
command under both PI control and the proposed method. 
The bode diagrams explain how the proposed method can 
suppress vibration in theory. The proposed method offsets the 
resonance peak. Hence, the system should be stable at the 
resonance point. The simulation analysis and experimental 
results verify the good performance of the proposed method.  
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