• Title/Summary/Keyword: Vibration Method

Search Result 8,827, Processing Time 0.031 seconds

Optimal Treatment of Unconstrained Visco-elastic Damping Layer on Beam to Minimize Vibration Responses (동적응답을 최소화하는 비구속형 제진보의 제진부위 최적설계)

  • Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.656-661
    • /
    • 2005
  • An optimization formulation of unconstrained damping treatment on beams is proposed to minimize vibration responses using a numerical search method. The fractional derivative model is combined with RUK's equivalent stiffness approach in order to represent nonlinearity of complex modulus of damping materials with frequency and temperature. The loss factors of partially covered unconstrained beam are calculated by the modal strain energy method. Vibration responses are calculated by using the modal superposition method, and of which design sensitivity formula with respect to damping layout is derived analytically. Plugging the sensitivity formula into optimization software, we can determine optimally damping treatment region that gives minimum forced response under a given boundary condition. A numerical example shows that the proposed method is very effective in minimizing vibration responses with unconstrained damping layer treatment.

  • PDF

Redesign of Steering Wheel Support T-beam Structure to Reduce its Vibration Using Frequency Response Function Synthesis Technique (주파수응답함수 결합법을 이용한 승용차 핸들지지 T 빔의 진동저감 재설계)

  • 변성준;박남규;박윤식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.123-130
    • /
    • 2001
  • The purpose of this paper is to reduce the level of idling vibration on a steering wheel. In some cases, vibration on steering wheel is amplified due to the resonance between the first natural frequency of T-beam and engine idling speed. Using SDM(structural dynamic modification) technique, T-beam is redesigned to reduce its vibration. This paper used FRF(frequency response function) synthesis technique which is entirely dependent on experiment. But this method requires lots of test efforts to enhance its reliability of design. While combining this method with an analytic method. the experimental burden, the major drawback of FRP synthesis method, can be considerably relieved. Using ana1ytic sensitivity analysis, some effective modification regions are preliminarily chosen as candidate Positions where SDM can be applied to modify T-beam\`s dynamic characteristics.

  • PDF

Efficient Analysis Models for Vertical Vibration of Space Framed Structures (3차원 골조구조물의 효율적인 연직진동해석)

  • 안상경;홍성일;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.78-85
    • /
    • 1996
  • The effect of vertical vibration of a beam is significantly influenced by higher modes of vibration. Therefore, a beam can be modeled using several elements must De used to represent a vibrating beam. As a result, analysis of a space framed structure for vertical vibration requires increase number of elements leading to more complicated model with many degree of freedom which requires large amount of computing resources for dynamic analysis. An efficient analysis method for vertical vibration of space framed structures are proposed in this paper which is presented in three method. The first method is to determine minimum nodes that shall be used to obtain dynamic response with the vertical vibration. Secondly, matrix condensation methods are introduced to reduce the computation efforts used to perform dynamic analysis and the selection of primary degree-of-freedom is proposed. The third method is of using the mass participation factor for the selection of primary degree-of-freedom.

  • PDF

An Improved Input Shaping Method for Precise Stopping and Residual Vibration Reduction of Cranes (크레인의 정밀한 정지와 잔류진동 억제를 위한 개선된 입력 성형기법)

  • Bae, Gyu-Hyun;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.717-724
    • /
    • 2013
  • Industrial cranes are indispensable equipment in heavy industry. However, unwanted vibrations in cranes often cause accidents. Input shaping is widely accepted as a useful tool for removing residual vibration in cranes. A unity magnitude zero vibration (UMZV) input shaper is often used for cranes driven by on-off-type motors. However, although a UMZV input shaper minimizes residual vibration, the input shaper cannot prevent the crane from moving slightly further than expected from the original command. This paper describes an improved method of input shaping that can compensate for position inaccuracies, as well as remove the residual vibration of cranes. Experiments were performed to validate the proposed input-shaping method, illustrated through numerical simulations.

Vibration of Liquid-filled Cylindrical Storage Tank with an Annular Plate Cover (환원판 덮개를 갖는 원통형 연료탱크의 진동해석)

  • 김영완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.751-759
    • /
    • 2003
  • The theoretical method is developed to investigate the vibration characteristics of the sloshing and bulging mode for the circular cylindrical storage tank with an annular plate on free surface. The cylindrical tank is filled with an inviscid and incompressible liquid. The liquid domain is limited by a rigid cylindrical surface and a rigid flat bottom. As the effect of free surface waves Is taken into account in the analysis, the bulging and sloshing modes are studied. The solution for the velocity potential of liquid movement is assumed as a suitable harmonic function that satisfies Laplace equation and the relevant boundary conditions. The Rayleigh-Ritz method is used to derive the frequency equation of the cylindrical tank. The effect of Inner-to-outer radius ratio and thickness of annular plate and liquid volume on vibration characteristics of storage tank is studied. The finite element analysis is performed to demonstrate the validity of present theoretical method.

A Study on the Vehicle Vibration Mode through the On-line Test for Korean High Speed Train (한국형 고속전철의 주행시험을 통한 진동 모드 분석 연구)

  • 박찬경;김영국;김석원;김기환
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.156-161
    • /
    • 2003
  • Korean High Speed Train (KHST) has been tested on high speed line in JungBu site since it was developed in 2002. The data acquisition system was used to test successfully the on-line test for proving the dynamic performance of KHST. The recognition of system vibration mode for railway vehicle is essential to understand the characteristics of design for dynamic system and diagnose the dynamic problems of vehicle system during test and operation. But, up to now, there are the efforts to know the system vibration mode within limit of theoretical field only, not experimental approach with systematic method. The theoretical results are too reliable to apply to real design problem, because it is theoretically based on the homogeneous linear system although the real system have the nonlinear characteristics and vary the environmental conditions. Therefor, in this paper, it is proposed the efficient method of vibration analysis for rail vehicle system and this method apply to KHST to recognize the vibration mode characteristics of it. The results show that this method is able to make the system vibration modes for KHST clear.

  • PDF

Free Vibration Analysis of Rectangular Plate with Multiple Rectangular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 직사각형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.881-887
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple rectangular holes. Even though there have been many methods developed for the addressed problem, they suffer from computational time. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a rectangular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Measurements of In-Plane Vibration Intensity of a Semi-Infinite Beam (반무한보의 면내 진동인텐시티 측정)

  • 김창렬;길현권;전진숙;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1185-1188
    • /
    • 2002
  • The objective of this paper is to apply experimental methods to measure the in-plane vibration intensity of a semi-infinite beam. Two experimental methods have been implemented to measure the in-plane vibration intensity of the beam. The first method is the cross spectral intensity measurement method using two accelerometers. The second method is the frequency response method using the only one acrelerometer. It has the advantages of shortening measurement time and reducing accelerometer phase error. Experimental results showed that those experimental methods can be effectively used to measure the structural In-plane vibration intensity.

  • PDF

Vibration Analysis and Optimization of the Dynamic Characteristics of the Press Machine (The 1st Report, Vibration Analysis of the Press Machine) (프레스 기계의 진동해석과 동특성의 최적화(제 1보, 프레스 기계의 진동해석))

  • ;長松 昭男
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.34-41
    • /
    • 1990
  • Mode Synthesis Method is applied to analyize the vibration characteristics of the press machine sold at present. Vibration analysis of the machine has not been done thoroughly as far, because of its complicated structure and much bigger unlinearity of its vibration characteristics. The press was disassembled by parts, and it was experimented by the exciting techniques and curve fitting methods, and analyzed by the Mode Synthesis Method. The 2 results were showed good agreements at each part. We confirming it, the machine was assembled, and experimented and analyzed by the same method. Also good agreements between 2 methods were obtained. In addition, impact responses of the actual moving press were agreed with the analyzed values by the Mode Synthesis Method. And we found that the first bending mode of the slide was ruling the vibration characteristics of the press.

  • PDF

A modified modal perturbation method for vibration characteristics of non-prismatic Timoshenko beams

  • Pan, Danguang;Chen, Genda;Lou, Menglin
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.689-703
    • /
    • 2011
  • A new perturbation method is introduced to study the undamped free vibration of a non-prismatic Timoshenko beam for its natural frequencies and vibration modes. For simplicity, the natural modes of vibration of its corresponding prismatic Euler-Bernoulli beam with the same length and boundary conditions are used as Ritz base functions with necessary modifications to account for shear strain in the Timoshenko beam. The new method can transform two coupled partial differential equations governing the transverse vibration of the non-prismatic Timoshenko beam into a set of nonlinear algebraic equations. It significantly simplifies the solution process and is applicable to non-prismatic beams with various boundary conditions. Three examples indicated that the new method is more accurate than the previous perturbation methods. It successfully takes into account the effect of shear deformation of Timoshenko beams particularly at the free end of cantilever structures.