• Title/Summary/Keyword: Very short-term electric load forecasting

Search Result 9, Processing Time 0.026 seconds

Very Short-term Electric Load Forecasting for Real-time Power System Operation

  • Jung, Hyun-Woo;Song, Kyung-Bin;Park, Jeong-Do;Park, Rae-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1419-1424
    • /
    • 2018
  • Very short-term electric load forecasting is essential for real-time power system operation. In this paper, a very short-term electric load forecasting technique applying the Kalman filter algorithm is proposed. In order to apply the Kalman filter algorithm to electric load forecasting, an electrical load forecasting algorithm is defined as an observation model and a state space model in a time domain. In addition, in order to precisely reflect the noise characteristics of the Kalman filter algorithm, the optimal error covariance matrixes Q and R are selected from several experiments. The proposed algorithm is expected to contribute to stable real-time power system operation by providing a precise electric load forecasting result in the next six hours.

24 hour Load Forecasting using Combined Very-short-term and Short-term Multi-Variable Time-Series Model (초단기 및 단기 다변수 시계열 결합모델을 이용한 24시간 부하예측)

  • Lee, WonJun;Lee, Munsu;Kang, Byung-O;Jung, Jaesung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.493-499
    • /
    • 2017
  • This paper proposes a combined very-short-term and short-term multi-variate time-series model for 24 hour load forecasting. First, the best model for very-short-term and short-term load forecasting is selected by considering the least error value, and then they are combined by the optimal forecasting time. The actual load data of industry complex is used to show the effectiveness of the proposed model. As a result the load forecasting accuracy of the combined model has increased more than a single model for 24 hour load forecasting.

A Study on Short-Term Load Forecasting System Using Data Mining (데이터 마이닝을 이용한 단기부하예측 시스템 연구)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Juhg-Chan;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.588-591
    • /
    • 2003
  • This paper presents a new short-term load forecasting system using data mining. Since the electric load has very different pattern according to the day, it definitely gives rise to the forecasting error if only one forecasting model is used. Thus, to resolve this problem, the fuzzy model-based classifier and predictor are proposed for the forecasting of the hourly electric load. The proposed classifier is the multi-input and multi-output fuzzy system of which the consequent part is composed of the Bayesian classifier. The proposed classifier attempts to categorize the input electric load into Monday, Tuesday$\sim$Friday, Saturday, and Sunday electric load, Then, we construct the Takagi-Sugeno (T-S) fuzzy model-based predictor for each class. The parameter identification problem is converted into the generalized eigenvalue problem (GEVP) by formulating the linear matrix inequalities (LMIs). Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

  • PDF

Short-term Electric Load Forecasting using temperature data in Summer Season (기온데이터를 이용한 하계 단기 전력수요예측)

  • Koo, Bon-gil;Lee, Heung-Seok;Lee, Sang-wook;Lee, Hwa-Seok;Park, Juneho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.300-301
    • /
    • 2015
  • Accurate and robust load forecasting model plays very important role in power system operation. In case of short-term electric load forecasting, its results offer standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve accuracy of load forecasting. This paper proposes a newly forecasting model for weather sensitive season including temperature and Cooling Degree Hour(C.D.H) data as an input. This Forecasting model consists of previous electric load and preprocessed temperature, constant, parameter. It optimizes load forecasting model to fit actual load by PSO and results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows better performance than comparison groups.

  • PDF

Short-term Electric Load Forecasting for Summer Season using Temperature Data (기온 데이터를 이용한 하계 단기전력수요예측)

  • Koo, Bon-gil;Kim, Hyoung-su;Lee, Heung-seok;Park, Juneho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1137-1144
    • /
    • 2015
  • Accurate and robust load forecasting model is very important in power system operation. In case of short-term electric load forecasting, its result is offered as an standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve forecasting accuracy. In order to achieve accurate forecasting result for summer season, this paper proposes a forecasting model using corrected effective temperature based on Heat Index and CDH data as inputs. To do so, we establish polynomial that expressing relationship among CDH, load, temperature. After that, we estimate parameters that is multiplied to each of the terms using PSO algorithm. The forecasting results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows more accurate by 1.018%, 0.269%, 0.132% than comparison groups, respectively.

The Study on Load Forecasting Using Artificial Intelligent Algorithm (지능형 알고리즘을 이용한 전력 소비량 예측에 관한 연구)

  • Lee, Jae-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.720-722
    • /
    • 2009
  • Optimal operation of electric power generating plants is very essential for any power utility organization to reduce input costs and possibly the prices of electricity in general. This paper developed models for load forecasting using neural networks approach. This model is tested using actual load data of the Busan and weather data to predict the load of the Busan for one month in advance. The test results showed that the neural network forecasting approach is more suitable and efficient for a forecasting application.

  • PDF

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

Short-Term Forecasting of Monthly Maximum Electric Power Loads Using a Winters' Multiplicative Seasonal Model (Winters' Multiplicative Seasonal Model에 의한 월 최대 전력부하의 단기예측)

  • Yang, Moonhee;Lim, Sanggyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.63-75
    • /
    • 2002
  • To improve the efficiency of the electric power generation, monthly maximum electric power consumptions for a next one year should be forecasted in advance and used as the fundamental input to the yearly electric power-generating master plan, which has a greatly influence upon relevant sub-plans successively. In this paper, we analyze the past 22-year hourly maximum electric load data available from KEPCO(Korea Electric Power Corporation) and select necessary data from the raw data for our model in order to reflect more recent trends and seasonal components, which hopefully result in a better forecasting model in terms of forecasted errors. After analyzing the selected data, we recommend to KEPCO the Winters' multiplicative model with decomposition and exponential smoothing technique among many candidate forecasting models and provide forecasts for the electric power consumptions and their 95% confidence intervals up to December of 1999. It turns out that the relative errors of our forecasts over the twelve actual load data are ranged between 0.1% and 6.6% and that the average relative error is only 3.3%. These results indicate that our model, which was accepted as the first statistical forecasting model for monthly maximum power consumption, is very suitable to KEPCO.

Deep Learning Based Short-Term Electric Load Forecasting Models using One-Hot Encoding (원-핫 인코딩을 이용한 딥러닝 단기 전력수요 예측모델)

  • Kim, Kwang Ho;Chang, Byunghoon;Choi, Hwang Kyu
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.852-857
    • /
    • 2019
  • In order to manage the demand resources of project participants and to provide appropriate strategies in the virtual power plant's power trading platform for consumers or operators who want to participate in the distributed resource collective trading market, it is very important to forecast the next day's demand of individual participants and the overall system's electricity demand. This paper developed a power demand forecasting model for the next day. For the model, we used LSTM algorithm of deep learning technique in consideration of time series characteristics of power demand forecasting data, and new scheme is applied by applying one-hot encoding method to input/output values such as power demand. In the performance evaluation for comparing the general DNN with our LSTM forecasting model, both model showed 4.50 and 1.89 of root mean square error, respectively, and our LSTM model showed high prediction accuracy.