• Title/Summary/Keyword: Vertical drop test

Search Result 50, Processing Time 0.024 seconds

Biomechanical Analysis of Wearing Carbon Nanotube-Based Insole during Drop Landing (탄소나노튜브 인솔 착용에 따른 드롭 착지 동작의 생체역학적 분석)

  • Chae, Woen-Sik;Jung, Jae-Hu;Lee, Haeng-Seob
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.429-435
    • /
    • 2012
  • The purpose of this study was to determine the biomechanical effect of wearing carbon nanotube-based insole on cushioning and muscle tuning during drop landing. Twenty male university students(age: $21.2{\pm}1.5yrs$, height: $175.4{\pm}4.7cm$, weight: $70.2{\pm}5.8kg$) who have no musculoskeletal disorder were recruited as the subjects. Average axial strain, average shear strain, inversion angle, linear velocity, angular velocity, vertical GRF and loading rate were determined for each trial. For each dependent variable, a one-way analysis of variance(ANOVA) with repeated measures was performed to test if significant difference existed among different three conditions(p<.05). The results showed that Average axial strain of line 4 was significantly less in CNT compared with EVA and PU during IP phase. The average shear strain was less in CNT compared with EVA and PU during other phases. The inversion angle was increased in CNT compared with EVA and PU during all phase. In linear velocity, angular velocity, vertical GRF and loading rate, there were no significant difference between the three groups. This result seems that fine particle of carbon nanotube couldn't make geometric form which can absolve impact force by increasing density through eliminating voids of forms. Thus, searching for methods that keep voids of forms may play a pivotal role in developing of insole. This has led to suggestions of the need for further biomechanical analysis to these factors.

An Experimental Study on the Evaporative Heat Transfer Characteristics of $CO_2$/Propane Mixtures Flowing Upward in Vertical Smooth and Micro-fin Tubes with an Outer Diameter of 5 mm (외경 5mm 수직 평활관 및 마이크로핀관 내의 이산화탄소/프로판 혼합냉매의 증발열전달 특성에 관한 실험적 연구)

  • Cho, Jin-Min;Kim, Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.243-251
    • /
    • 2009
  • Refrigerant mixtures provide an opportunity to adjust their properties to fit design criteria and a possibility to create new blends that can improve heat transfer characteristics. Therefore, mixture of $CO_2$ and propane is chosen which may be a promising refrigerant and has good environmental compatibility. This paper presents measured heat transfer coefficient data during evaporation process of $CO_2$/propane mixtures flowing upward in vertical smooth and. micro-fin tubes. Smooth and micro-fin tubes with outer diameters of 5 mm and length of 1.44in were selected as test tubes. The tests were conducted at mass fluxes of 212 to $656kg/m^{2}s$, inlet temperatures of -10 to $30^{\circ}C$, heat fluxes of 15 to $60\;kW/m^2$ and for several compositions (75/25, 50/50, 25/75 wt%). Among $CO_2$/propane refrigerant mixtures, the heat transfer characteristics are much better than that of any compositions when the composition is 75/25 (wt%).

An Experimental Study on the Drag Reduction with polymer Additives in Pipe Flow System (관 유동에서 폴리머 첨가에 의한 저항감소 현상의 실험적 고찰)

  • Cha, K.O.;Kim, J.G.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.1-11
    • /
    • 1999
  • Previous researchers have studied how to reduce a pumping power in order to save energy in the fluid transporting system. Especially, it has been studied a lot about reducing the pressure drop among parameters related to the energy saving for fluid transport. This study is to investigate the effect of a substantial drag reduction caused by the polymer(A611P, A601P) when the working fluids flow to the vertical and horizontal direction in the vertical cylindrical equipment of closed flow system. In this experiment, we mount a visualization equipment on the test section and take pictures. With using the PIV system, instrument and analyzing the movement of bubble for different polymer concentration are observed and some mechanism of the drag reduction effect is clarified.

  • PDF

The effects of Exercise and Low-Power Laser on the Changes of the behavior in the Cerebellar Injured rats by 3-Acetylpyridine (3-AP로 인한 소뇌병변 흰쥐에서 운동과 저출력 레이저가 행동변화에 미치는 영향)

  • Baek, Il-Hun;Ha, Mi-Sook;Ahn, So-Youn;Koo, Bong-Oh;Rho, Min-He
    • Journal of Korean Physical Therapy Science
    • /
    • v.12 no.4
    • /
    • pp.79-87
    • /
    • 2005
  • The purposes of this study were to test the effects of the low power laser and exercise on the recovery in the cerebellar injured rats by 3-Acetylpyridine. Cerebellar injury was induced by 3-Acetylpyridine chemoablation of the inferior olive. Thirty Sprague-Dawley rats were assigned to the normal control and 3AP control and 3 experimental groups. Each experimental group was treated from 5 days after being injured for the 5 min(laser group), 10 min(exercise group) and 15min(exercise with laser) everyday during the 2 weeks. The Hindlimb splay test, Vestibular drop test, Hindlimb stride width test, Maximal Height Vertical Jump test were examined at pre-treatment on 1st day and 5th, 10th, 14th days after treatment on the cerebellar injured rats by 3AP. The results of this experiment were as follows; There were significantly increased exercise on the 3 experimental groups comparied with the 3AP control group, in the Hindlimb splay test, Vestibular drop test, Hindlimb stride width test, and Maximal Height Jump test(P<.05).

  • PDF

Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact (준등방성 복합적층판의 저속충격에 의한 손상특성)

  • Kim, J.H.;Jeon, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System (방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Choi, Jung-Youl;Eom, Mac;Kang, Duk-Man;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

A Behavior Analysis of Railway Steel Plate Girder Bridge in the applying Resilient Panel Track system (방진궤도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Lee, Si-Yong;Eom, Mac;Oh, Soo-Jin;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.437-446
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements(about 59%) and stresses(about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

Studies on the Evaporative Heat Transfer Characteristics and Pressure Drop of CO2 Flowing Upward in Inclined (45°) Smooth and Micro-fin Tubes (경사평활관 및 마이크로핀관에서의 이산화탄소의 증발열전달 특성과 압력강하에 관한 실험적 연구)

  • Kim, Yong-Jin;Cho, Jin-Min;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.612-620
    • /
    • 2008
  • New alternative refrigerants have been developed due to the ozone layer depletion and global warming. For this reason, carbon dioxide is believed to be a promising refrigerant for use in air conditioners and heat pumps. Evaporative heat transfer characteristics and pressure drop of $CO_2$ with outer diameter of 5 mm in inclined ($45^{\circ}$) smooth and micro-fin tubes have been investigated by the experiments with respect to several test conditions such as mass fluxes, heat fluxes, evaporation temperatures in this study. The inclined ($45^{\circ}$) smooth and micro-fin tubes with length of 1.44 m were installed to measure the evaporative heat transfer coefficients of $CO_2$ and heat was supplied to the refrigerant by direct heating method where the test tube was uniformly heated by electricity. The tests were conducted at mass fluxes from 212 to $656\;kg/m^2s$, heat fluxes from 15 to $60\;kW/m^2$ and evaporation temperatures from -10 to $20^{\circ}C$. The heat transfer coefficients of $CO_2$ are slightly increased with increasing mass flux, and the heat transfer characteristics in the inclined ($45^{\circ}$) tubes are enhanced about $5{\sim}10%$ compared with those in horizontal or vertical tubes.

Relationship between Neurocognitive Ability and Risk Factors of Anterior Cruciate Ligament Injuries in Female Athletes (여성선수의 신경인지 능력과 전방십자인대 손상 위험요인과의 관계)

  • Ha, Sung-He;Park, Sang-Kyoon
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.301-309
    • /
    • 2018
  • The aim of this study was to investigate the relationship between the neurocognitive ability and the risk factors of non-contact anterior cruciate ligament injuries during landing in female recreational athletes. Thirty-two female athletes participated in computerized neurocognition test and motion analysis for drop vertical jump. Pearson's linear correlation analysis was performed to analyze the relationship between the raw scores of neurocognition test and biomechanical variables including 3D joint angle, moment, power, vertical ground reaction force, loading rate, and support time. There were correlations between the scores of neurocognition test and biomechanical variables as high the neurocognition score, it also increase landing strategies were used to maintain posture of the lower extremity. Therefore, the neurocognitive test might be used as a good screening method to detect the risk factors before injury.

Investigation of lateral impact behavior of RC columns

  • Anil, Ozgur;Erdem, R. Tugrul;Tokgoz, Merve Nilay
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.123-132
    • /
    • 2018
  • Reinforced concrete (RC) columns which are the main vertical structural members are exposed to several static and dynamic effects such as earthquake and wind. However, impact loading that is sudden impulsive dynamic one is the most effective loading type acting on the RC columns. Impact load is a kind of impulsive dynamic load which is ignored in the design process of RC columns like other structural members. The behavior of reinforced concrete columns under impact loading is an area of research that is still not well understood; however, work in this area continues to be motivated by a broad range of applications. Examples include reinforced concrete structures designed to resist accidental loading scenarios such as falling rock impact; vehicle or ship collisions with buildings, bridges, or offshore facilities; and structures that are used in high-threat or high-hazard applications, such as military fortification structures or nuclear facilities. In this study, free weight falling test setup is developed to investigate the behavior effects on RC columns under impact loading. For this purpose, eight RC column test specimens with 1/3 scale are manufactured. While drop height and mass of the striker are constant, application point of impact loading, stirrup spacing and concrete compression strength are the experimental variables. The time-history of the impact force, the accelerations of two points and the displacement of columns were measured. The crack patterns of RC columns are also observed. In the light of experimental results, low-velocity impact behavior of RC columns were determined and interpreted. Besides, the finite element models of RC columns are generated using ABAQUS software. It is found out that proposed finite element model could be used for evaluation of dynamic responses of RC columns subjected to low-velocity impact load.