Browse > Article
http://dx.doi.org/10.15207/JKCS.2018.9.8.301

Relationship between Neurocognitive Ability and Risk Factors of Anterior Cruciate Ligament Injuries in Female Athletes  

Ha, Sung-He (Integrative Sports Science Research Laboratory, Yonsei University)
Park, Sang-Kyoon (Physical Education, Korea National Sport University)
Publication Information
Journal of the Korea Convergence Society / v.9, no.8, 2018 , pp. 301-309 More about this Journal
Abstract
The aim of this study was to investigate the relationship between the neurocognitive ability and the risk factors of non-contact anterior cruciate ligament injuries during landing in female recreational athletes. Thirty-two female athletes participated in computerized neurocognition test and motion analysis for drop vertical jump. Pearson's linear correlation analysis was performed to analyze the relationship between the raw scores of neurocognition test and biomechanical variables including 3D joint angle, moment, power, vertical ground reaction force, loading rate, and support time. There were correlations between the scores of neurocognition test and biomechanical variables as high the neurocognition score, it also increase landing strategies were used to maintain posture of the lower extremity. Therefore, the neurocognitive test might be used as a good screening method to detect the risk factors before injury.
Keywords
Neurocognition; Landing; Female athletes; Anterior Cruciate Ligament; Screening;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. R. Ford, G. D. Myer & G. D. Hewett. (2003). Valgus knee motion during landing in high school female and male basketball players. Medicine and Science in Sports and Exercise, 35(10), 1745-1750. DOI: 10.1249/01.MSS.0000089346.85744.D9.   DOI
2 D. C. Herman, J. L. Zaremski, H. K. Vincent & K. R. Vincent. (2015). Effect of neurocognition and concussion on musculoskeletal injury risk. Current Sports Medicine Reports, 14(3), 194-199. DOI: 10.1249/JSR.0000000000000157.   DOI
3 T. Nessler, L. Denney & J. Sampley. (2017). ACL injury prevention: what does research tell us?. Current Reviews in Musculoskeletal Medicine, 10(3), 281-288. DOI: 10.1007/s12178-017-9416-5.   DOI
4 C. Senter & S. L. Hame. (2006). Biomechanical analysis of tibial torque and knee flexion angle. Sports Medicine, 36(8), 635-641.   DOI
5 M. V. Paterno, M. J. Rauh, L. C. Schmitt, K. R. Ford & T. E. Hewett. (2014). Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. The American Journal of Sports Medicine, 42(7), 1567-1573. DOI: 10.1177/0363546514530088.   DOI
6 C. C. Bozynski, K. Kuroki, J. P. Stannard, P. A. Smith, A. M. Stoker, C. R. Cook & J. L. Cook. (2015). Evaluation of partial transection versus synovial debridement of the ACL as novel canine models for management of ACL injuries. The Journal of Knee Surgery, 28(5), 404-410. DOI: 10.1055/s-0035-1544975.   DOI
7 G. Myklebust, A. Skjolberg & R. Bahr. (2013). ACL injury incidence in female handball 10 years after the Norwegian ACL prevention study: important lessons learned. British Journal of Sports Medicine, 47(8), 476-479. DOI: 10.1136/bjsports-2012-091862.   DOI
8 C. L. Ardern, K. E. Webster, N. F. Taylor & J. A. Feller. (2011). Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. The American Journal of Sports Medicine, 39(3), 538-543. DOI: 10.1177/0363546510384798.   DOI
9 T. E. Hewett et al. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes a prospective study. The American Journal of Sports Medicine, 33(4), 492-501. DOI: 10.1177/0363546504269591.   DOI
10 D. C. Herman & J. T. Barth, (2016). Drop-Jump Landing Varies With Baseline Neurocognition: Implications for Anterior Cruciate Ligament Injury Risk and Prevention. The American Journal of Sports Medicine, 44(9), 2347-2353. DOI: 10.1177/0363546516657338.   DOI
11 S. M. Lephart, D. M. Pincivero, J. L. Giraido & F. H. Fu. (1997). The role of proprioception in the management and rehabilitation of athletic injuries. The American Journal of Sports Medicine, 25(1), 130-137. DOI: 10.1177/036354659702500126.   DOI
12 E. Kapreli et al. (2009). Anterior cruciate ligament deficiency causes brain plasticity: a functional MRI study. The American Journal of Sports Medicine, 37(12), 2419-2426. DOI: 10.1177/0363546509343201.   DOI
13 M. V. Paterno, L. C. Schmitt, K. R. Ford, M. J. Rauh, G. D. Myer, B. Huang & T. E. Hewett. (2010). Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. The American Journal of Sports Medicine, 38(10), 1968-1978. DOI: 10.1177/0363546510376053.   DOI
14 M. V. Paterno, M. J. Rauh, L. C. Schmitt, K. R. Ford & T. E. Hewett. (2012). Incidence of contralateral and ipsilateral anterior cruciate ligament (ACL) injury after primary ACL reconstruction and return to sport. Clinical Journal of Sport Medicine, 22(2), 116-121. DOI: 10.1097/JSM.0b013e318246ef9e.   DOI
15 G. B. Wilkerson. (2012). Neurocognitive reaction time predicts lower extremity sprains and strains. International Journal of Athletic Therapy and Training, 17(6), 4-9. DOI: 10.1123/ijatt.17.6.4.   DOI
16 M. Santello. (2005). Review of motor control mechanisms underlying impact absorption from falls. Gait & Posture, 21(1), 85-94. DOI: 10.1016/j.gaitpost.2004.01.005.   DOI
17 M. A. Brooks, K. Peterson, K. Biese, J. Sanfilippo, B. C. Heiderscheit & D. R. Bell. (2016). Concussion increases odds of sustaining a lower extremity musculoskeletal injury after return to play among collegiate athletes. The American Journal of Sports Medicine, 44(3), 742-747. DOI: 10.1177/0363546515622387.   DOI
18 D. E. Gwinn, J. H. Wilckens, E. R. McDevitt, G. Ross & T. C. Kao. (2000). The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. The American Journal of Sports Medicine, 28(1), 98-102. DOI: 10.1177/03635465000280012901.   DOI
19 G. V. Kamath, T. Murphy, R. A. Creighton, N. Viradia, T. N. Taft & J. T. Spang. (2014). Anterior cruciate ligament injury, return to play, and reinjury in the elite collegiate athlete: analysis of an NCAA Division I cohort. The American Journal of Sports Medicine, 42(7), 1638-1643. DOI: 10.1177/0363546514524164.   DOI
20 E. Arendt & R. Dick. (1995). Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. The American Journal of Sports Medicine, 23(6), 694-701. DOI: 10.1177/036354659502300611.   DOI
21 T. E. Hewett, K. R. Ford, B. J. Hoogenboom & G. D. Myer. (2010). Understanding and preventing ACL injuries: current biomechanical and epidemiologic considerations-update 2010. North American Journal of Sports Physical Therapy, 5(4), 234-251.
22 J. M. Hootman, R. Dick & J. Agel. (2007). Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. Journal of Athletic Training, 42(2), 311-319.
23 R. Sharir et al. (2016). Mapping current research trends on anterior cruciate ligament injury risk against the existing evidence: In vivo biomechanical risk factors. Clinical Biomechanics(Bristol, Avon), 37, 34-43. DOI: 10.1016/j.clinbiomech.2016.05.017.   DOI
24 M. Leppanen et al. (2017). Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. The American Journal of Sports Medicine, 45(2), 386-393. DOI: 10.1177/0363546516665810.   DOI
25 J. T. Podraza & S. C. White. (2010). Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury. The Knee, 17(4), 291-295. DOI: 10.1016/j.knee.2010.02.013.   DOI
26 O. E. Olsen, G. Myklebust, L. Engebretsen & R. Bahr. (2004). Injury mechanisms for anterior cruciate ligament injuries in team handball. The American Journal of Sports Medicine, 32(4), 1002-1012. DOI: 10.1177/0363546503261724.   DOI
27 W. M. Jeong & J. W. Lee. (2005). Cognitive Exercise Therapy: Focused Application of Rehabilitation Therapy. Journal of Rehabilitation Research, 9(2), 87-113.
28 M. V. Paterno, K. R. Ford, G. D. Myer, R. Heyl & T. E. Hewett. (2007). Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clinical Journal of Sport Medicine, 17(4), 258-262. DOI: 10.1097/JSM.0b013e31804c77ea.   DOI
29 A. D. Harrison, K. R. Ford, G. D. Myer, & T. E. Hewett. (2011). Sex differences in force attenuation: a clinical assessment of single-leg hop performance on a portable force plate. British Journal of Sports Medicine, 45(3), 198-202. DOI: 10.1136/bjsm.2009.061788.   DOI
30 D. R. Grooms & J. A. Onate. (2016). Neuroscience application to noncontact anterior cruciate ligament injury prevention. Sports Health, 8(2), 149-152. DOI: 10.1177/1941738115619164.   DOI
31 D. Sugimoto, G. D. Myer, K. D. Foss, M. J. Pepin, L. J. Micheli & T. E. Hewett. (2016). Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta-regression analysis. British Journal of Sports Medicine, 50(20), 1259-1266. DOI: 10.1136/bjsports-2015-095596.   DOI
32 C. B. Swanik. (2015). Brains and sprains: the brain's role in noncontact anterior cruciate ligament injuries. Journal of Athletic Training, 50(10), 1100-1102. DOI: 10.4085/1062-6050-50.10.08.   DOI
33 T. Alkjaer, E. B. Simonsen, S. P. Magnusson, H. Aagaard & P. Dyhre-Poulsen. (2002). Differences in the movement pattern of a forward lunge in two types of anterior cruciate ligament deficient patients: copers and non-copers. Clinical Biomechanics(Bristol, Avon), 17(8), 586-593.   DOI
34 T. L. Chmielewski, K. S. Rudolph, G. K. Fitzgerald, M. J. Axe & L. Snyder-Mackler. (2001). Biomechanical evidence supporting a differential response to acute ACL injury. Clinical Biomechanics(Bristol, Avon), 16(7), 586-591.   DOI
35 N. L. Grimm, J. C. Jacobs, J. Kim, B. S. Denney & K. G. Shea. (2015). Anterior cruciate ligament and knee injury prevention programs for soccer players: a systematic review and meta-analysis. The American Journal of Sports Medicine, 43(8), 2049-2056. DOI: 10.1177/0363546514556737.   DOI
36 C. B. Swanik, T. Covassin, D. J. Stearne & P. Schatz. (2007). The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. The American Journal of Sports Medicine, 35(6), 943-948. DOI: 10.1177/0363546507299532.   DOI
37 G. D. Myer, D. Sugimoto, S. Thomas & T. E. Hewett. (2013). The influence of age on the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a meta-analysis. The American Journal of Sports Medicine, 41(1), 203-215. DOI: 10.1177/0363546512460637.   DOI
38 C. L. Ardern, N. F. Taylor, J. A. Feller & K. E. Webster. (2012). Return-to-sport outcomes at 2 to 7 years after anterior cruciate ligament reconstruction surgery. The American Journal of Sports Medicine, 40(1), 41-48. DOI: 10.1177/0363546511422999.   DOI
39 E. H. Hartigan, M. J. Axe & L. Snyder-Mackler. (2010). Time line for noncopers to pass return-to-sports criteria after anterior cruciate ligament reconstruction. Journal of Orthopaedic & Sports Physical Therapy, 40(3), 141-154. DOI: 10.2519/jospt.2010.3168.   DOI
40 R. Thomee et al. (2011). Muscle strength and hop performance criteria prior to return to sports after ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 19(11), 1798-1805. DOI: 10.1007/s00167-011-1669-8.   DOI
41 M. R. Lovell, G. L. Iverson, M. W. Collins, D. McKeag & J. C. Maroon. (1999). Does Loss of Consciousness Predict Neuropsychological Decrements After Concussion?. Clinical Journal of Sport Medicine, 9(4), 193-198.   DOI
42 C. T. Gualtieri & L. G. Johnson (2006). Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Archives of Clinical Neuropsychology, 21(7), 623-643. DOI: 10.1016/j.acn.2006.05.007.   DOI
43 G. D. Myer, K. R. Ford, J. Khoury, P. Succop & T. E. Hewett. (2011). Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. British Journal of Sports Medicine, 45(4), 245-252. DOI: 10.1136/bjsm.2009.069351.   DOI