• Title/Summary/Keyword: Venturi flow rate

Search Result 51, Processing Time 0.234 seconds

A numerical study on the flow characteristics and condensed water inflow in the Venturi tube with T-branch tube (T-분지관이 부착된 벤튜리관의 유동특성과 응축수 유입에 대한 수치해석 연구)

  • Kim, S.I.;Park, S.H.;Hwang, J.G.
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.173-181
    • /
    • 2019
  • This study was carried out numerically to investigate the flow characteristics in the Venturi tube with $90^{\circ}$ T-branch tube and the inflow of condensed water into the Venturi tube from the branch tube. In this study, the diameter of the branch tube(1, 2, 3mm) and the neck diameter of the Venturi tube(0.3, 0.9, 1.5mm) were varied. The flow rate of the water at the Venturi tube inlet is 80cc/min and the water temperature is 288K. The condensed water temperature at the branch tube inlet is 355K. It was found that the velocity and pressure of the fluid near the branch point in the Venturi tube were more dependent on the diameter of the Venturi tube than the diameter of the branch tube. The temperature of the mixed water at the exit of the Venturi tube was the highest when the Venturi tube's neck diameter is 0.9mm and the branch tube diameter is 2mm. This means that the condensed water is flowing well through the branch tube.

Numerical analysis of the venturi flowmeter in the liquid lead-bismuth eutectic circuit after long-term operation

  • Zhichao Zhang;Rafael Macian-Juan;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1081-1090
    • /
    • 2024
  • The liquid Lead-bismuth eutectic is used as the coolant for Gen-IV reactor concepts. However, due to its strong corrosive and high operating temperature, it is difficult to accurately measure the flow rate in long-term operating conditions. Venturi flowmeter is a simple structured flowmeter, which plays a very important role in the flow measurement of high-temperature liquid metals, especially since the existing flowmeters are difficult to be competent. It has the advantages of easy maintenance and stable operation. Therefore, it is necessary to study the operating conditions of the venturi flowmeter under high-temperature conditions. This work performs a series of simulations of the fluid-solid interaction between the flow liquid metal and venturi flowmeter with COMSOL software, including the dimensional sensitivity analysis of the venturi flowmeter to explore the most suitable structure and parameters for liquid heavy metal, the sensitivity analysis of the geometric parameters of the venturi tube on the varying conditions. It shows that when the contraction angle of the venturi flowmeter is 33°, the diffusion angle is 13°, the diameter of the throat is 8 mm, and the temperature of the lead-bismuth eutectic is 733.15 K, it is most suitable for the measurement in the lead-bismuth circuit.

Discharge and loss coefficients for viscoelastic fluids in differential pressure flow meters (차압식 유량계에서 점탄성유체의 유출 및 손실계수)

  • Jeon, U-Cheong;Jo, Byeong-Su;Baek, Byeong-Jun;Park, Bok-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1501-1509
    • /
    • 1996
  • Differential pressure devices such as an orifice and Venturi are widely used in the measurement of flow rate of fluid mainly due to cost effectiveness and easy installation. In the current study, the viscoelastic effect on discharge and loss coefficients of those flow meters were investigated experimentally. Aqueous solutions of Polyacrylamide (200, 500, and 800 ppm) as viscoelastic fluids were used. Discharge coefficient of an orifice for viscoelastic fluids increased significantly up to approximately 15-20% when compared with that for water, while loss coefficient decreased up to 10-25% depending on the diameter ratio, .betha.. Also, pressure recovery for viscoelastic fluids was extended much longer than that for water. On the other hand, discharge and loss coefficients of Venturi for viscoelastic fluids were found to be strongly dependent on the Reynolds number. In both flow meters, the concentration effect for discharge and loss coefficients was not observed at more over than 200 ppm of aqueous solution. Conclusively, orifice and Venturi flow meters should be calibrated very carefully in the flow rate measurement for viscoelastic fluids.

Feedwater Flow-rate Evaluation of Nuclear Power Plants Using Wavelet Analysis and Artificial Neural Networks (웨이블릿 해석과 인공 신경회로망을 이용한 원자력발전소의 급수유량 평가)

  • Yu, Sung-Sik;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.47-53
    • /
    • 2002
  • The steam generator feedwater flow-rate in a nuclear power plant was estimated by means of artificial neural networks with the wavelet analysis for enhanced information extraction. The fouling of venturi meters, used for steam generator feedwater flow-rate in pressurized water reactors, may result in unnecessary plant power derating. The back-propagation network was used to generate models of signals for a pressurized water reactor Multiple-input, single-output hetero-associative networks were used for evaluating the feedwater flow rate as a function of a set of related variables. The wavelet was used as a low pass filter eliminating the noise from the raw signals. The results have shown that possible fouling of venturi can be detected by neural networks, and the feedwater flow-rate can be predicted as an alternative to existing methods. The research has also indicated that the decomposition of signals by wavelet transform is a powerful approach to signal analysis for denoising.

Effect of Rear-Vortex of a Convergent-Divergent Duct on the Flow Acceleration Installed in a Vertical Structure (수직구조물 후방의 와류현상이 구조물에 설치된 벤투리관의 유체가속 효과에 미치는 영향에 관한 해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho;Cho, Hyun-Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • A convergent-divergent nozzle or venturi nozzle has been used to accelerate the wind speed at its throat. The wind speed at the throat is inversely proportional to its area according to the continuity equation. In this numerical study, an airflow phenomena in the venturi system placed at a vertical structure was investigated to understand the vortex effect occurred at the rear-side of the vertical structure on the air speed increment at the throat of the venturi system. For this study, a venturi system sized by $20(m){\times}20(m){\times}6(m)$ was modelled and the area ratio(AR) of the model venturi was 2.86. To see the vortex effect on the air flow acceleration in the venturi throat, two different boundary conditions was defined From the study, it was found that the pressure coefficient(CP) of the venturi system with the vortex formed at the exit of the venturi was about 2.5times of the CP of the venturi system without the vortex effect. The velocity increment rate of the venturi system with the vortex was 61% but 9.5% only at the venturi system without the vortex. Conclusively, it can be said that the venturi system installed in a vertical structure has very positive effect on the flow acceleration at its throat due to the vortex formed at the rear-side of the vertical structure.

Flow visualizations and analysis on characteristics of bubbly flows exhausted from a venturi-type bubble generator with an air vent (공기유입구를 가진 벤츄리 형상의 기포발생기에서 토출되는 기포 유동 특성의 가시화 측정 분석)

  • Bae, Hyunwoo;Lee, Seungmin;Song, Moonsoo;Sung, Jaeyong
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • Flow visualizations have been carried out to analyze the characteristics of bubby flows exhausted from a venturi-type bubble generator with an air vent. For various design parameters and operating conditions of the bubble generator, the images of bubbly flows was recorded using a high-speed camera and a microscope. Then the amount and size distribution of bubble was evaluated by an image processing technique. The results show that for increasing the amount of bubble, it is more effective to reduce the venturi throat than to enlarge the air vent diameter. If the water flow rate increases, the bubble generation rate increases but reaches a status of saturation, whose condition depends on Reynolds number at a given air vent diameter. The bubble size increases as the diameter of venturi throat decreases and Reynolds number increases. However, the air vent diameter is not a significant factor on bubble size.

Flow Control Characteristics of Cavitating Venturi in a Liquid Rocket Engine Test Facility (액체로켓엔진 연소시험설비에서의 캐비테이션 벤튜리 유량공급 특성)

  • Kang, Donghyuk;Ahn, Kyubok;Lim, Byoungjik;Han, Sanghoon;Choi, Hwan-Seok;Seo, Seonghyeon;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.84-91
    • /
    • 2014
  • The flow rate control of a cavitating venturi has been investigated with downstream pressure variation. A set of cavitating venturies for a liquid rocket engine thrust chamber firing test facility have been designed and manufactured. The flow characteristics of the cavitating venturies have been analyzed by experimental and computational methods. Results showed that constant mass flow rate condition was established by the cavitation inside the venturi. However, upstream pressure less than the actual design pressure of the cavitating venturi could not supply a constant flow rate.

CFD Analysis for the Design of a Venturi Tube-type Air Bubble Generator with Porous Material Throat (다공성 재질의 목을 가진 벤츄리 관 공기방울 발생장치의 설계를 위한 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.667-672
    • /
    • 2016
  • The goal of this study was to develop a venturi-type air bubble generator with a porous material throat. Using the two-phase multi-flow CFD analysis for the venturi tube, researchers determined the optimal design of major dimensions, such as the venturi throat length and diameter, in order to control the performance of the air bubble supply through the porous material throat in a venturi tube. Researchers then determined the relationship between the flow rate of supply water and the major design dimensions of the venturi-type air generator for maximizing the performance of the air bubble supply through the porous material throat in a venturi tube.

A Study on the Pollutant Reduction by Venturi Type After-burner (벤츄리형 후연소기의 오염물질 저감에 관한 연구)

  • Lee, Hwa-Sin;Lee, Yong-Hoo;Lee, Jin-Seok;Kwon, Oh-Boong;Lee, Do-Hyung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.81-86
    • /
    • 2005
  • The purpose of this study is to develop venturi type after-burner in order to obtain pollutant reduction effect and find the best stable combustion condition. For this purpose, through a flow analysis, the shape of venturi type was made and flame holder locations were also decided by measuring chemical species at before and after the after-burner. Also, various chemical species concentration were measured at changing the induced air rates and the oxygen for oxygen enrichment for the solution the problems of much oxygen flow rate and the flame stability range. As results of this study, a flow distribution and the purification effect was excellent at venturi contraction 0.5 and flame holder location 12mm below the center of Venturi throat. On the purification characteristics, we found that pollutants reduction was effective when area ratio and oxygen are increased. But there are suitable quantities due to the flame shape change and combustion efficiency.

  • PDF

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.