DOI QR코드

DOI QR Code

Flow Control Characteristics of Cavitating Venturi in a Liquid Rocket Engine Test Facility

액체로켓엔진 연소시험설비에서의 캐비테이션 벤튜리 유량공급 특성

  • Kang, Donghyuk (Combustion Chamber Team, Korea Aerospace Research Institute) ;
  • Ahn, Kyubok (School of Mechanical Engineering, Chungbuk National University) ;
  • Lim, Byoungjik (Combustion Chamber Team, Korea Aerospace Research Institute) ;
  • Han, Sanghoon (Combustion Chamber Team, Korea Aerospace Research Institute) ;
  • Choi, Hwan-Seok (Combustion Chamber Team, Korea Aerospace Research Institute) ;
  • Seo, Seonghyeon (School of Mechanical Engineering, Hanbat National University) ;
  • Kim, Hongjip (School of Mechanical Engineering, Chungnam National University)
  • Received : 2014.02.23
  • Accepted : 2014.05.07
  • Published : 2014.06.01

Abstract

The flow rate control of a cavitating venturi has been investigated with downstream pressure variation. A set of cavitating venturies for a liquid rocket engine thrust chamber firing test facility have been designed and manufactured. The flow characteristics of the cavitating venturies have been analyzed by experimental and computational methods. Results showed that constant mass flow rate condition was established by the cavitation inside the venturi. However, upstream pressure less than the actual design pressure of the cavitating venturi could not supply a constant flow rate.

본 연구에서는 하류의 압력 변동이 있을 때 캐비테이션 벤튜리에 의한 유량 제어 성능을 평가하였다. 이를 위해 액체로켓엔진 연소시험설비에 적용할 캐비테이션 벤튜리를 설계, 제작하였다. 캐비테이션 벤튜리에 대한 실험과 수치해석을 수행하여 유량 특성을 분석한 결과 캐비테이션 벤튜리는 캐비테이션이 발생하는 영역에서 일정한 유량을 공급하는 것이 입증되었다. 그러나 실제공급압력이 설계압력보다 작을 경우 캐비테이션 벤튜리의 기능을 하지 못해 유량을 일정하게 공급할 수 없는 구간을 알 수 있었다.

Keywords

References

  1. Randall, L.N., "Rocket Applications of the Cavitating Venturi", Journal of the American Rocket Society, Vol. 22, No. 1, pp. 28-38, 1952. https://doi.org/10.2514/8.4412
  2. Ghassemi, H. and Fasih, H.F., "Application of small size cavitating venturi as flow controller and flow meter," Flow Measurement and Instrumentation, Vol. 22, No. 5, pp. 406-412, 2011. https://doi.org/10.1016/j.flowmeasinst.2011.05.001
  3. Yazici, B., "Numerical & Experimental Investigation of Flow Through a Cavitation Venturi," Recent Advances in Space Technologies, pp. 236-241, 2007.
  4. Kumar, P.S. and Pandit, A.B., "Modeling Hydrodynamic Cavitation," Chemical Engineering & Technology, Vol. 22, No. 12, pp. 1017-1027, 1999. https://doi.org/10.1002/(SICI)1521-4125(199912)22:12<1017::AID-CEAT1017>3.0.CO;2-L
  5. Xu, C., Heister, D. and Field, R., "Modeling Cavitating Venturi Flows," Journal of Propulsion and Power, Vol. 18, No. 6, pp. 1227-1234, 2002. https://doi.org/10.2514/2.6057
  6. Ulas, A., "Passive Flow Control in Liquid-Propellant Rocket Engines with Cavitating Venturi," Flow Measurement and Instrumentation, Vol. 17, pp. 93-97, 2006. https://doi.org/10.1016/j.flowmeasinst.2005.10.003
  7. Kim, S.H., Lim, B.J., Han, Y.M., Seol, W.S., Lee, S.Y. and Moon, I.Y., "LOx/Kerosene Sub-scale LRE Firing Test Facility", Proceedings of The KSPE Fall Conference, pp. 166-169, 2004.
  8. Kang, D.H., Lim, B.J., Moon, I.Y., Seo, S.H., Han, Y.M. and Choi, H.S., "Operation and Maintenance Techniques for Liquid Rocket Combustor Ground Firing Test Facility", Journal of the Korea Society of Propulsion Engineers, Vol. 11, No. 3, pp. 43-49, 2007.
  9. ANSYS Fluent Ver. 13 manual reference.
  10. Schnerr, G.H. and Sauer, J., "Physical and Numerical Modeling of Unsteady Cavitation Dynamics," In Fourth International Conference on Multiphase Flow, New Orleans, USA, 2001.

Cited by

  1. An Experimental Study on Flow Characteristics of Cavitation Venturi vol.19, pp.4, 2015, https://doi.org/10.6108/KSPE.2015.19.4.001