• 제목/요약/키워드: Velocity-area method

검색결과 550건 처리시간 0.024초

상계해법에 의한 압출가공의 비틀림 해석 (An Upper Bound Analysis for the Twisting Phenomenon of Extrusion)

  • 김한봉;진인태
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.340-346
    • /
    • 1998
  • A kinematically admissible velocity field is developed for the analysis of twisting of the extruded products with elliptical shapes from round billet. The twisting of extruded product is caused by the lin-early increased rotational velocity from the center on the cross-section of the workpiece at the die exit. In the analysis the rotational velocity in angular direction is assumed by the multiplication of radial distance and angular velocity. The angular velocity is zero at the die entrance. The increase rate of angular velocity is determined by the minimization of plastic work. The results of the analysis show that the angular velocity of the extruded product in creases with the die twisting angle, the aspect ratio of product the friction condition, the reduction of area, and decreases with the die length.

  • PDF

Projectile's Velocity Effect for Voltage Induced at Sensing Coil for Applying to Air Bursting Munition

  • Ryu, Kwon-Sang;Shin, Jun-Goo;Jung, Kyu-Chae;Son, Derac.
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.90-94
    • /
    • 2013
  • We designed a model composed of a ring type magnet, a yoke, and a sensing coil embedded in a projectile for simulating the muzzle velocity. The muzzle velocity was obtained from the master curve for the induced voltage at sensing coil and the velocity as the projectile pass through the magnetic field. The induced voltage and the projectile's velocity are fitted by the $2^{nd}$ order polynomial. The skin effect difference between projectiles which consist of aluminum-aluminum and aluminum-steel was small. The projectile will surely be burst at the pre-determined target area using the flight time and the projectile muzzle velocity calculated from the voltage induced at the sensing coil on the projectile.

초음파 속도법을 활용한 강판의 두께 변화 탐지를 위한 기초연구 (A Basic Study on the Varying Thickness Detection of Steel Plate Using Ultrasonic Velocity Method)

  • 김우석;문성모;김철민;임석빈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권6호
    • /
    • pp.146-152
    • /
    • 2020
  • 본 연구는 강교량의 폐합부재 등 시각적으로 탐지하기 어려운 부위의 강재에 대한 손상을 탐지하기 위한 방법을 개발하기 위한 목적의 기초연구이다. 여러 비파괴 방법들 중에서 초음파 속도법을 활용하여 두께가 다른 시편에 대해서 초음파 속도법을 실시하여, 평균 매질내 전파속도를 도출하였고, 이를 활용하여 강재 부재에 대한 회귀분석을 실시하였다. 동일한 재료일 경우 회귀분석의 결과를 활용하면 다른 부재의 두께를 도출할 수 있을 것으로 예상된다. 또한, 광범위한 범위를 스캐닝하기 위해 200 mm/s로 이동하는 연속스캐닝 기법을 검토하였고, 두께가 변화는 부재의 두께를 효과적으로 예측할 수 있었다.

부유물 침전을 고려한 준설투기장 설계의 적합성 평가 (Suitability Evaluation of Containment Area Design Considering Suspended Solid Sedimentation)

  • 지성현;김찬기;정혁상;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제11권10호
    • /
    • pp.41-48
    • /
    • 2010
  • 본 연구에서는 기존에 적용된 준설투기장 설계에서 준설투기장에서 배출되는 상등수의 부유물 농도 예측에 대한 적합성 평가를 위하여 실제 현장 준설 시 준설투기장 내에서 준설토의 입도분포 및 상등수의 부유물 농도 분포를 측정하여 설계 예측 값과 비교하였으며, 상등수의 유속과 부유물 농도와의 관계를 분석하였다. 평가 결과, 현장 측정값과 설계 예측값이 비교적 유사한 경향을 보였으나, 준설 초기 및 상등수 유속이 증가한 시점에서는 설계 예측값과 상이한 측정값을 보였다. 이는 기존에 적용된 준설투기장 설계법이 준설 기간에 따라 민감하게 변화하는 준설토의 침강 깊이 및 상등수의 유속 등을 반영하지 못하기 때문으로 판단된다. 또한 준설투기장에서 동시에 측정된 유속과 부유물 농도의 분포가 유사한 경향을 보이므로 상등수의 유속과 부유물 침전이 상당히 밀접한 관계가 있는 것으로 관측되었다. 따라서, 현장 준설투기장 상황 변화를 보다 정확히 예측하기 위하여 준설토 계면고, 침강깊이, 상등수 유속에 따라 변화하는 부유물 침전을 고려한 준설투기장 설계법이 필요하다고 사료된다.

발파진동 예측방법에 관한 연구 (A Study on the Prediction Method of Blasting Vibration)

  • 이연수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.361-365
    • /
    • 2006
  • In order to predict method of blasting vibration in ground and it's resident located around blasting field in urban area, blasting vibration characteristics were measured the vibration velocity(cm/sec), vibration acceleration($cm/sec^2$), vibration acceleration level(dB) and vibration level(dB(V)). The charged powder were used to 1.25kg and measuring sites were 25 points front 4m to 90m at the ground. The correlation of vibration velocity, vibration acceleration, vibration acceleration level and vibration level by square root scaled distance and cube root scaled distance were investigated. The correlation of PPV(peak particle velocity) velocity by SRSD(square root scaled distance) and CRSD(cube root scaled distance) was 0.85 and 0.86 and the correlation of PVS(peak vector sum) velocity by SRSD and CRSD was 0.82. Also vibration acceleration, vibration acceleration level and vibration level by SRSD and CRSD was 0.61, 0.62 and 0.82, respectively. As results, the vibration velocity and vibration level(dB(V)) was showed good correlation, but the vibration acceleration and vibration acceleration level was not showed good correlation.

  • PDF

Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.427-436
    • /
    • 2017
  • Concrete technologists have used ultrasonic pulse velocity test for decades to evaluate the properties of concrete. However, the presented research work focuses on the use of ultrasonic pulse velocity test to study the degradation in steel-concrete bond subjected to increasing loading. A detailed experimental investigation was conducted by testing five identical beam specimens under increasing loading. The loading was increased from zero till failure in equal increments. From the experimentation, it was found that as the reinforced concrete beams were stressed from control unloaded condition till complete failure, the propagating ultrasonic wave velocity reduced. This reduction in wave velocity is attributed to the initiation, development, and propagation of internal cracking in the concrete surrounding the steel reinforcement. Using both direct and semidirect methods of testing, results of reduction in wave velocity with evidence of internal cracking at steel-concrete interface are presented. From the presented results and discussion, it can be concluded that the UPV test method can be successfully employed to identify zones of poor bonding along the length of reinforced concrete beam. The information gathered by such testing can be used by engineers for localizing repairs thereby leading to saving of time, labor and cost of repairs. Furthermore, the implementation strategy along with real-world challenges associated with the application of the proposed technique and area of future development have also been presented.

시간-주파수 기법을 이용한 배관 감육 감시 방법 (Monitoring Pipe Thinning Using Time-frequency Analysis)

  • 손창호;박진호;윤두병;정의필;최영철
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1224-1230
    • /
    • 2006
  • Pipe thinning is one of the major issues for the structural fracture of pipes of nuclear power plants. Therefore a method to inspect a large area of piping systems quickly and accurately is needed. In this paper, we proposed the method for monitoring pipe thinning. Our basic idea come from that a group velocity of impact wave is different as wall thickness. If the group velocity is measured, wall thickness can be estimated. To obtain the group velocity, time -frequency analysis is used. This is because an arrival time difference can be measured easily in time-frequency domain rather than time domain. To test the performance of this technique, experiments have been performed for a plate and U type pipe. Results show that the proposed technique is quite powerful in the monitoring pipe thinning.

관내 평면파를 이용한 유속 측정기술 (Measurement Method of Mean Flow Velocity Using the Plane Waves in the Pipe)

  • 정완섭;권휴상;박경암;백종승
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.243-246
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity not only over the cross sectional area but also along the pipe by exploiting the acoustic plane waves in the pipe. When fluid flows in the pipe and two plane waves propagate oppositely through the medium in it, the flow velocity causes a change of the wave number of the plane waves. The wave number of the positive going plane wave decreases but oppositely that of negative going one increases in comparison to no flow of the medium in the pipe. Theoretical backgrounds of this method are in details discussed and measurement results of the mean flow velocity are illustrated to reveal the feasibility and effectiveness of the suggested technique.

  • PDF

ESTIMATING THE GEOSTROPHIC VELOCITY COMPONENT IN THE SEA SURFACE VELOCITY OBSERVED BY THE HF RADAR IN THE UPSTREAM OF THE KUROSHIO

  • Tokeshi, Ryoko;Ichikawa, Kaoru;Fujii, Satoshi;Sato, Kenji;Kojima, Shoichiro
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.672-675
    • /
    • 2006
  • The geostrophic current component is estimated from the sea surface velocity observed by the long-range High-Frequency Ocean Radar (HF radar) system in the upstream of the Kuroshio, by comparing with geostrophic velocity determined from along-track T/P and Jason-1 altimetry data. However, the sea surface velocity of the HF radar (HF velocity) contains not only the geostrophic current but also the ageostrophic current such as tidal current and wind-driven Ekman current. Tidal current component is first extracted by the harmonic analysis of the time series of the HF velocity. Then, the Ekman current is further estimated from daily wind data of IFREMER by applying the least-square method to the residual difference between the HF velocity and the altimetry geostrophic velocity. As a result, the Ekman current in the HF velocity is estimated as 1.32 % of the wind speed and as rotated 45$^{\circ}$ clockwise to the wind direction. These parameters are found almost common in the Kuroshio area and in the Open Ocean. After these corrections, the geostrophic velocity component in the HF velocity agrees well with the altimetry geostrophic velocity.

  • PDF

Characteristics of tidal turbulence near the bottom at a coastal trench in Tongyoung, Korea

  • Kim, Yonghae;Hong, Chul-Hoon
    • 수산해양기술연구
    • /
    • 제50권4호
    • /
    • pp.435-446
    • /
    • 2014
  • Tidal turbulence was examined using three-dimensional tidal velocity data observed at a trench offshore of Tongyoung, Korea. The kinetic energy and intensity, including the variation period of the flow velocity and direction, were used to investigate the relationships between tidal turbulence and fishing gear dynamics, including the effects of swimming fish during fishing operations. As the resultant velocity increased from 0.2 to 0.9 m/s, the kinetic energy also significantly increased, while the turbulence intensity decreased from 50 to 10%. Tidal flow in strong flow fields displayed shorter periods of between 4 and 10 s, as determined by fast Fourier transform, the global wavelet method, and peak event analysis, and the periods were compared with the period of response to swimming fish and to oscillation of fishing gear. As mean velocity increased, velocity amplitude also increased from 0.1 to 0.6 m/s, and its directional amplitude changed markedly from 20 and $90^{\circ}$. Our study suggests that tidal turbulence can influence fish behavior or fishing gear geometry during fishing operations, although our analysis considered only a limited area. In future work, observations should be carried out over a more extensive depth and area.