• Title/Summary/Keyword: Velocity perception

Search Result 30, Processing Time 0.033 seconds

The Effects of Driving Rehabilitation Functional Training on Visual Perception and Driving Reaction Velocity (운전시뮬레이터 훈련이 시 지각 및 운전 반응 속도에 미치는 효과)

  • Lee, Jungsook;Kim, Sungwon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.4
    • /
    • pp.77-81
    • /
    • 2017
  • Purpose : This study examined the effects of driving rehabilitation functional training on visual perception ability and driving reaction velocity. Those subjects were put under MVPT-3 test to see their visual perceptual functions before and after the 4weeks' driving rehabilitation function training and then put to TMT A-type test to see their driving reaction velocity performance. The followings are the results of this study. Methods : Using a driving simulator, driving rehabilitation functional training was performed targeting men and women aged in 20s 20 minutes per time, two times per week, for a month. Results : As for the change in visual perception, the Raw Score of MVPT-3 very significantly increased (p<.01), and the Standard Score also very significantly increased (p<.01). As for the change in reaction velocity, TMT A-type very significantly decreased (p<.01), and TMT B-type also very significantly decreased (p<.01). Conclusion : It could be found that driving rehabilitation functional training should be effective for both visual perception and reaction velocity. Consequently, the driving rehabilitation function training can be applied to clinics as training method for functional recovery and improvement of visual perceptual functions and driving reaction velocity performance ability of the patients. Thus, various functional programs should be studied in the future.

The Effect of Dynamic Visual-Motor Integration Training on the Visual Perception Reaction Velocity (역동적 시각-운동 통합 훈련이 시지각 처리 속도에 미치는 영향)

  • Song, Minok;Lee, Eunsil;Park, Sungho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.4
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: This study was conducted to test the impact of The Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity. Dynavision were used to measure data from the participating 24 students(K college). Method : The participants were the 24 students of 'K' College in Busan in there twenties. They were divided into the The Dynamic Visual-Motor integration training group and the control group. To know if the Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity, the Dynamic Visual-Motor integration training was implemented triweekly for 4 weeks. In Dynamic Visual-Motor integration training the ball should be grasped with one hand and threw by an arm. Only the balls threw beyond the objective point were counted. The visual perception reaction velocity and the number of response were measured before and after experiment by Dynavision. Result : Firstly, the visual perception reaction velocity was increased in Dynamic Visual-Motor integration training group compared with control group. Secondly, the number of response was also increased in Dynamic Visual-Motor integration training group compared with control group. Conclusion : As a result of The Dynamic Visual-Motor integration training has an effect on the visual perception reaction velocity and the number of response. The Dynamic Visual-Motor integration training seems to be effective for cerebral apoplexy patient who has visual perceptional disability or cerebral palsy child in training for visual perceptional development or daily living activities development. Study participated by more detailed and practical patients in hospital is needed.

Quantitative Analysis of Automotive Radar-based Perception Algorithm for Autonomous Driving (자율주행을 위한 레이더 기반 인지 알고리즘의 정량적 분석)

  • Lee, Hojoon;Chae, HeungSeok;Seo, Hotae;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.29-35
    • /
    • 2018
  • This paper presents a quantitative evaluation method and result of moving vehicle perception using automotive radar. It is also important to analyze the accuracy of the perception algorithm quantitatively as well as to accurately percept nearby moving vehicles for safe and efficient autonomous driving. In this study, accuracy of the automotive radar-based perception algorithm which is developed based on interacting multiple model (IMM) has been verified via vehicle tests on real roads. In order to obtain experimental data for quantitative evaluation, Long Range Radar (LRR) has been mounted on the front of the ego vehicle and Short Range Radar (SRR) has been mounted on the rear side of both sides. RT-range has been installed on the ego vehicle and the target vehicle to simultaneously collect reference data on the states of the two vehicles. The experimental data is acquired in various relative positions and velocity, and the accuracy of the algorithm has been analyzed according to relative position and velocity. Quantitative analysis is conducted on relative position, relative heading angle, absolute velocity, and yaw rate of each vehicle.

Factors Related to Velocity Perception in a Graphic Simulator (시뮬레이터의 그래픽모듈에 대한 속도감 인자 분석)

  • Son, Kwon;Choi, Kyung-Hyun;Eom, Sung-Suk;Hong, Sung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.121-130
    • /
    • 2001
  • This paper addresses a method for evaluating perceived velocities of the graphic module in a driving simulator. The major two graphic factors associated with perceived velocities are analyzed: they are the lateral distance between a virtual driver and an array of environmental objects and the textural density of these objects. A graphical representation of a vehicle and its surrounding environment are constructed by employing a three-dimensional tool, Pro/ENGINEER and a virtual environment, dVISE. Using the developed virtual driving environment, experiments have been carried out to formulate the relationship between velocity perception and each factor. Based on the experimental results, nonlinear regression equations are derived to show how the perceived velocities are dependent upon distance/density.

  • PDF

Implementation of the Perception Process in Human‐Vehicle Interactive Models(HVIMs) Considering the Effects of Auditory Peripheral Cues (청각 주변 자극의 효과를 고려한 효율적 차량-운전자 상호 연동 모델 구현 방법론)

  • Rah, Chong-Kwan;Park, Min-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.67-75
    • /
    • 2006
  • HVIMs consists of simulated driver models implemented with series of mathematical functions and computerized vehicle dynamic models. To effectively model the perception process, as a part of driver models, psychophysical nonlinearity should be considered not only for the single-modal stimulus but for the stimulus of multiple modalities and interactions among them. A series of human factors experiments were conducted using the primary sensory of visual and auditory modalities to find out the effects of auditory cues in visual velocity estimation tasks. The variations of auditory cues were found to enhance/reduce the perceived intensity of velocity as the level changed. These results indicate that the conventional psychophysical power functions could not applied for the perception process of the HVIMs with multi-modal stimuli. 'Ruled surfaces' in a 3-D coordinate system(with the intensities of both kinds of stimuli and the ratio of enhancement, respectively for each coordinate) were suggested to model the realistic perception process of multi-modal HVIMs.

Differences in the Control of Anticipation Timing Response by Spatio-temporal Constraints

  • Seok-Hwan LEE;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • v.7 no.2
    • /
    • pp.39-51
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate differences in the control process to satisfy spatial and temporal constraints imposed upon the anticipation timing response by analyzing the effect of spatio-temporal accuracy demands on eye movements, response accuracy, and the coupling of eye and hand movements. Research design, data, and methodology: 12 right-handed male subjects participated in the experiment and performed anticipation timing responses toward a stimulus moving at three velocities (0.53m/s, 0.66m/s, 0.88m/s) in two task constraint conditions (temporal constraint, spatial constraint). During the response, response accuracy and eye movement patterns were measured from which timing and radial errors, the latency of saccade, fixation duration of the point of gaze (POG), distance between the POG and stimulus, and spatio-temporal coupling of the POG and hand were calculated. Results: The timing and radial errors increased with increasing stimulus velocity, and the spatio-temporal constraints led to larger timing errors than the temporal constraints. The latency of saccade and the temporal coupling of eye and hand decreased with increasing stimulus velocity and were shorter and longer respectively in the spatio-temporal constraint condition than in the temporal constraint condition. The fixation duration of the POG also decreased with increasing stimulus velocity, but no difference was shown between task constraint conditions. The distance between the POG and stimulus increased with increasing stimulus velocity and was longer in the temporal constraint condition compared to the spatio-temporal constraint condition. The spatial coupling of eye and hand was larger with the velocity 0.88m/s than those in other velocity conditions. Conclusions: These results suggest that differences in eye movement patterns and spatio-temporal couplings of stimulus, eye and hand by task constraints are closely related with the accuracy of anticipation timing responses, and the spatial constraints imposed may decrease the temporal accuracy of response by increasing the complexity of perception-action coupling.

Two Independent mechanisms for perception of motion in depth

  • Shioiri, Satoshi
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.25-29
    • /
    • 2000
  • Two different binocular cues are known for detecting motion in depth. One is disparity change in time and the other is inter-ocular velocity difference. Shioiri, Saisho and Yaguchi (1999) demon-strated that motion in depth can be seen based solely on inter-ocular velocity differences as well as on the disparity change in time. They used conditions in which either cue was minimized and measured performance based on motion in depth, finding better performance than chance level when either velocity cue or the disparity cue was almost isolated. However, there may have been influences from the cue minimized in each condition, since it was practically impossible to isolate perfectly either cue. I re-analyzed their data to examine whether the performance in the condition with disparity change and that in the condition with inter-ocular velocity difference were correlated. The result showed the correlation is very low and therefore, we can conclude that the visual system has two different mechanisms for motion in depth.

A Study on the Correlation between Visual Perception Ability and Balance Ability in the Health Elderly (노인의 시지각 능력과 균형능력과의 상관관계에 관한 연구)

  • Jang, Yong-Su;Park, Chang-Sik;Lee, Hyoung-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the correlation between the visual perception ability and the static dynamic balance ability in health elderly. Method: The Motor Free Visual Perception Test-Row Score(MVPT-RS) and MVPT-Process Time(MVPT-PT) were used for evaluating the visual perception abilities. Assessment of the balance ability was taken by using Good Balance System. In the assessment using Good Balance System, X, Y coordinate speed, anterior-posterior direction, medial-lateral direction and Velocity Movement(VM) in standing posture when eye open were measured as static balance abilities. Thirty-seven healthy elderly who live in Gwangyang participated in the experiment for 2 months, from October to November 2010. Results: 1. There were statistically significant differences of MVPT-RS, MVPT-PT, NSB-X, NSB-Y, NSB-VM, OLB-X, and OLB-VM based on the gender(p<0.05). 2. The negative correlations of MVPT-RS:NSB-Y(r=-0.354), MVPT-RS:OLB-X(r=-0.4), MVPT-RS: OLB-Y(r=-0.371), but positive correlations of MVPT-PT:DTB-T showed a statistical significance(r=0.45, p<0.05). 3. The positive correlations of NSB-X:NSB-Y(r=0.54), NSB-X: NSB-VM(r=0.848), NSB-Y:NSB-VM(r=0.531), OLB-X:OLB-Y(r=0.876), OLB-X:OLB-VM(r=0.872), and OLB-Y:OLB-VM(r=0.787) showed statistical significances(p<0.05). Conclusion: These results showed that the visual perception ability was correlated with some balance ability in health elderly. Especially the perception test process time(MVPT-PT) has closely related with the DTB-T. The visual perception ability is considered as a factor on the balance ability in health elderly. Further study will focus on the development of improving program of visual perception ability as an improving method of balancing ability in health elderly.

  • PDF

Stochastic Model Predictive Control for Stop Maneuver of Autonomous Vehicles under Perception Uncertainty (자율주행 자동차 정지 거동에서의 인지 불확실성을 고려한 확률적 모델 예측 제어)

  • Sangyoon, Kim;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.35-42
    • /
    • 2022
  • This paper presents a stochastic model predictive control (SMPC) for stop maneuver of autonomous vehicles considering perception uncertainty of stopped vehicle. The vehicle longitudinal motion should achieve both driving comfortability and safety. The comfortable stop maneuver can be performed by mimicking acceleration profile of human driving pattern. In order to implement human-like stop motion, we propose a reference safe inter-distance and velocity model for the longitudinal control system. The SMPC is used to track the reference model which contains the position uncertainty of preceding vehicle as a chance constraint. We conduct simulation studies of deceleration scenarios against stopped vehicle in urban environment. The test results show that proposed SMPC can execute comfortable stop maneuver and guarantee safety simultaneously.

The Generation of Directional Velocity Grid Map for Traversability Analysis of Unmanned Ground Vehicle (무인차량의 주행성분석을 위한 방향별 속도지도 생성)

  • Lee, Young-Il;Lee, Ho-Joo;Jee, Tae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • One of the basic technology for implementing the autonomy of UGV(Unmanned Ground Vehicle) is a path planning algorithm using obstacle and raw terrain information which are gathered from perception sensors such as stereo camera and laser scanner. In this paper, we propose a generation method of DVGM(Directional Velocity Grid Map) which have traverse speed of UGV for the five heading directions except the rear one. The fuzzy system is designed to generate a resonable traveling speed for DVGM from current patch to the next one by using terrain slope, roughness and obstacle information extracted from raw world model data. A simulation is conducted with world model data sampled from real terrain so as to verify the performance of proposed fuzzy inference system.