DOI QR코드

DOI QR Code

Differences in the Control of Anticipation Timing Response by Spatio-temporal Constraints

  • Received : 2023.06.01
  • Accepted : 2023.06.16
  • Published : 2023.06.30

Abstract

Purpose: The purpose of this study was to investigate differences in the control process to satisfy spatial and temporal constraints imposed upon the anticipation timing response by analyzing the effect of spatio-temporal accuracy demands on eye movements, response accuracy, and the coupling of eye and hand movements. Research design, data, and methodology: 12 right-handed male subjects participated in the experiment and performed anticipation timing responses toward a stimulus moving at three velocities (0.53m/s, 0.66m/s, 0.88m/s) in two task constraint conditions (temporal constraint, spatial constraint). During the response, response accuracy and eye movement patterns were measured from which timing and radial errors, the latency of saccade, fixation duration of the point of gaze (POG), distance between the POG and stimulus, and spatio-temporal coupling of the POG and hand were calculated. Results: The timing and radial errors increased with increasing stimulus velocity, and the spatio-temporal constraints led to larger timing errors than the temporal constraints. The latency of saccade and the temporal coupling of eye and hand decreased with increasing stimulus velocity and were shorter and longer respectively in the spatio-temporal constraint condition than in the temporal constraint condition. The fixation duration of the POG also decreased with increasing stimulus velocity, but no difference was shown between task constraint conditions. The distance between the POG and stimulus increased with increasing stimulus velocity and was longer in the temporal constraint condition compared to the spatio-temporal constraint condition. The spatial coupling of eye and hand was larger with the velocity 0.88m/s than those in other velocity conditions. Conclusions: These results suggest that differences in eye movement patterns and spatio-temporal couplings of stimulus, eye and hand by task constraints are closely related with the accuracy of anticipation timing responses, and the spatial constraints imposed may decrease the temporal accuracy of response by increasing the complexity of perception-action coupling.

Keywords

References

  1. Akpinar, S., Devrilmez, E., & Kirazci, S. (2012). Coincidence-anticipation timing requirements are different in racket sports. Perceptual and Motor Skills, 115(2), 581-593. https://doi.org/10.2466/30.25.27.PMS.115.5.581-593
  2. Aoyama, C., Goya, R., Suematsu, N., Kadota, K., Yamamoto, Y., & Shimegi, S. (2022) Spatial Accuracy of Predictive Saccades Determines the Performance of Continuous Visuomotor Action. Frontiers in Sports and Active Living, 3:775478. doi: 10.3389/fspor.2021.775478
  3. Bennett, S. J., de Xivry, J. J. O., Barnes, G. R., & Lefevre, P. (2007). Target acceleration can be extracted and represented within the predictive drive to ocular pursuit. Journal of Neurophysiology, 98(3), 1405-1414. https://doi.org/10.1152/jn.00132.2007
  4. Bennett, S. J., de Xivry, J. J. O., Lefevre, P., & Barnes, G. R. (2010). Oculomotor prediction of accelerative target motion during occlusion: Long-term and short-term effects. Experimental Brain Research, 204(4), 493-504. https://doi.org/10.1007/s00221-010-2313-4
  5. Berret, B., Bisio, A., Jacono, M., & Pozzo, T. (2014). Reach endpoint formation during the visuomotor planning of free arm pointing. European Journal of Neuroscience, 40(10), 3491-3503. https://doi.org/10.1111/ejn.12721
  6. Berthier, N. E., Clifton, R. K., Gullapalli, V., McCall, D. D., & Robin, D. J. (1996). Visual information and object size in the control of reaching. Journal of Motor Behavior, 28(3), 187-197. https://doi.org/10.1080/00222895.1996.9941744
  7. Bongers, R. M., & Michaels, C. F. (2008). The role of eye and head movements in detecting information about fly balls. Journal of Experimental Psychology: Human Perception and Performance, 34(6), 1515-1523. https://doi.org/10.1037/a0011974
  8. Bowman, M. C., Johannson, R. S., & Flanagan, J. R. (2009). Eye-hand coordination in a sequential target contact task. Experimental Brain Research, 195(2), 273-283. https://doi.org/10.1007/s00221-009-1781-x
  9. Camara, C., de la Malla, C., Lopez-Moliner, J., & Brenner, E. (2018). Eye movements in interception with delayed visual feedback. Experimental Brain Research, 236(7), 1837-1847. https://doi.org/10.1007/s00221-018-5257-8
  10. Danion, F. R., & Flanagan, J. R. (2018). Different gaze strategies during eye versus hand tracking of a moving target. Scientific Reports, 8(1), 1-9.
  11. de Brouwer, A., Flanagan, R., & Spering, M., (2021). Functional Use of Eye Movements for an Acting System. Trends in Cognitive Sciences, 25(3), 252-263. https://doi.org/10.1016/j.tics.2020.12.006
  12. de Vries, S., Huys, R., & Zanone, P. G. (2018). Keeping your eye on the target: Eye-hand coordination in a repetitive Fitts' task. Experimental Brain Research, 236(12), 3181-3190. https://doi.org/10.1007/s00221-018-5369-1
  13. Deconinck, F. J. A., van Polanen, V., Savelsbergh, G. J., & Bennett, S. J. (2011). The relative timing between eye and hand in rapid sequential pointing is affected by time pressure, but not by advance knowledge. Experimental Brain Research, 213(1), 99-109. https://doi.org/10.1007/s00221-011-2782-0
  14. Etchells, P. J., Benton, C. P., Ludwig, C. J., & Gilchrist, I. D. (2010). The target velocity integration function for saccades. Journal of Vision, 10(6), 1-14.
  15. Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception-action coupling affect natural anticipatory performance? Perception, 32(9), 1127-1139. https://doi.org/10.1068/p3323
  16. Fooken, J., Kreyenmeier, P., & Spering, M. (2021). The role of eye movements in manual interception: A mini-review. Vision Research, 183, 81-90.
  17. Hayhoe, M. M., McKinney, T., Chajka, K., & Pelz, J. B. (2012). Predictive eye movements in natural vision. Experimental Brain Research, 217(1), 125-136.
  18. Heinen, T., Jeraj, D., Vinken, P. M., & Velentzas, K. (2012). Land where you look? Functional relationships between gaze and movement behaviour in a backward salto. Biology of Sport, 29(3), 177-183. https://doi.org/10.5604/20831862.1003276
  19. Helsen, W. F., Elliott, D., Starkes, J. L., & Ricker, K. L. (1998). Temporal and spatial coupling of point of gaze and hand movements in aiming. Journal of Motor Behavior, 30(3), 249-259. https://doi.org/10.1080/00222899809601340
  20. Hofeldt, A. J., Hoefle, F. B., & Bonafede, B. (1996). Baseball hitting, binocular vision, and the Pulfrich phenomenon. Archives of Ophthalmology, 114(12), 1490-1494. https://doi.org/10.1001/archopht.1996.01100140688008
  21. Johansson, R. S., Westling, G., Backstrom, A., & Flanagan, J. R. (2001). Eye-hand coordination in object manipulation. Journal of Neuroscience, 21(17), 6917-6932. https://doi.org/10.1523/JNEUROSCI.21-17-06917.2001
  22. Kim, C. E., Thaker, G. K., Ross, D. E., & Medoff, D. (1997). Accuracies of saccades to moving targets during pursuit initiation and maintenance. Experimental Brain Research, 113(2), 371-377. https://doi.org/10.1007/BF02450336
  23. Kishita, Y., Ueda, H., & Kashino, M. (2020). Eye and Head Movements of Elite Baseball Players in Real Batting. Frontiers in Sports and Active Living, 2:3. doi: 10.3389/fspor.2020.00003
  24. Kuntz, J. R., Karl, J. M., Doan, J. B., & Whishaw, I. Q. (2018). Gaze anchoring guides real but not pantomime reach-to-grasp: Support for the action-perception theory. Experimental Brain Research, 236(4), 1091-1103. https://doi.org/10.1007/s00221-018-5196-4
  25. Land, M. F., & McLeod, P. (2000). From eye movements to actions: How batsmen hit the ball. Nature Neuroscience, 3(12), 1340-1345. https://doi.org/10.1038/81887
  26. Li, Y., Wang, Y., & Cui, H. (2018). Eye-hand coordination during flexible manual interception of an abruptly appearing, moving target. Journal of Neurophysiology, 119(1), 221-234. https://doi.org/10.1152/jn.00476.2017
  27. Lim, J. (2015). Effects of spatial and temporal constraints on interceptive aiming task performance and gaze control. Perceptual and Motor Skills, 121(2), 509-527. https://doi.org/10.2466/24.30.PMS.121c16x4
  28. Mann, D. L., Abernethy, B., & Farrow, D. (2010). Action specificity increases anticipatory performance and the expert advantage in natural interceptive tasks. Acta Psychologica, 135(1), 17-23. https://doi.org/10.1016/j.actpsy.2010.04.006
  29. Mann, D. L., Spratford, W., & Abernethy, B. (2013). The head tracks and gaze predicts: How the world's best batters hit a ball. PLoS ONE, 8(3), e58289.
  30. Marinovic, W., Plooy, A., & Tresilian, J. R. (2008). The time course of amplitude specification in brief interceptive actions. Experimental Brain Research, 188(2), 275-288. https://doi.org/10.1007/s00221-008-1360-6
  31. Marinovic, W., Plooy, A., & Tresilian, J. R. (2009). The utilisation of visual information in the control of rapid interceptive actions. Experimental Psychology, 56(4), 265-273. https://doi.org/10.1027/1618-3169.56.4.265
  32. Masaki, H., Sommer, W., Takasawa, N., & Yamazaki, K. (2012). Neural mechanisms of timing control in a coincident timing task. Experimental Brain Research, 218(2), 215-226. https://doi.org/10.1007/s00221-012-3052-5
  33. Medendorp, P. W., & Crawford, D. J. (2002). Visuospatial updating of reaching targets in near and far space. Neuroreport, 13(5), 633-636. https://doi.org/10.1097/00001756-200204160-00019
  34. Mon-Williams, M., Tresilian, J. R., Coppard, V. L., & Carson, R. G. (2001). The effect of obstacle position on reach-to-grasp movements. Experimental Brain Research, 137(3-4), 497-501. https://doi.org/10.1007/s002210100684
  35. Murdison, T. S., Pare-Bingley, C. A., & Blohm, G. (2013). Evidence for a retinal velocity memory underlying the direction of anticipatory smooth pursuit eye movements. Journal of Neurophysiology, 110(3), 732-747. https://doi.org/10.1152/jn.00991.2012
  36. Panchuk, D., & Vickers, J. N. (2006). Gaze behaviors of goaltenders under spatial-temporal constraints. Human Movement Science, 25(6), 733-752. https://doi.org/10.1016/j.humov.2006.07.001
  37. Park, H., Jang, D., & Park, S. (2018). Gaze Anchoring as a Spatial Reference for the Target during Aiming Movements. Korean Journal of Sport Psychology, 29(2), 65-79. https://doi.org/10.14385/KSSP.29.2.65
  38. Park, S. (2003). Visual Information Processing and Control Mechanism for Coincident Timing Response. Korean Journal of Sport Psychology, 14(4), 1-16.
  39. Park, S. (2005). Optimal eye movement strategies for enhancing the efficiency of coincident timing response. Korean Journal of Sport Psychology, 16(4), 161-177.
  40. Park, S. (2020). Coupling of Visual Perception and Action during the Performance of Anticipation Timing Task with Spatiotemporal Accuracy Demands. Korean Journal of Sport Psychology, 31(2), 135-149. https://doi.org/10.14385/KSSP.31.2.135
  41. Peterken, C., Brown, B., & Bowman, K. (1991). Predicting the future position of a moving target. Perception, 20(1), 5-16. https://doi.org/10.1068/p200005
  42. Peters, M. (1997). Gender differences in intercepting a moving target by using a throw or button press. Journal of Motor Behavior, 29(4), 290-296. https://doi.org/10.1080/00222899709600016
  43. Rand, M. K., & Stelmach, G. E. (2011). Adaptation of gaze anchoring through practice in young and older adults. Neuroscience Letters, 492(1), 47-51.
  44. Reppert, T. R., Servant, M., Heitz, R. P., & Schall, J. D. (2018). Neural mechanisms of speed-accuracy tradeoff of visual search: Saccade vigor, the origin of targeting errors, and comparison of the superior colliculus and frontal eye field. Journal of Neurophysiology, 120(7), 372-384. https://doi.org/10.1152/jn.00887.2017
  45. Sailer, U., Eggert, T., Ditterich, J., & Straube, A. (2003). Predictive pointing movements and saccades toward a moving target. Journal of Motor Behavior, 35(1), 23-32. https://doi.org/10.1080/00222890309602118
  46. Tochikura, I., Sato, D., Imoto, D., Nuruki, A., Yamashiro, K., Funada, R., & Maruyama, A. (2020). Baseball players' eye movements and higher coincident-timing task performance. Perceptual and Motor Skills, 127(3), 571-586. https://doi.org/10.1177/0031512520905435
  47. Tresilian, J. R. (2004). The accuracy of interceptive action in time and space. Exercise and Sport Sciences Reviews, 32(4), 167-173. https://doi.org/10.1097/00003677-200410000-00008
  48. Tresilian, J. R., & Lonergan, A. (2002). Intercepting a moving target: Effects of temporal precision constraints and movement amplitude. Experimental Brain Research, 142(2), 193-207. https://doi.org/10.1007/s00221-001-0920-9
  49. Tresilian, J. R., Oliver, J., & Carroll, T. (2003). Temporal precision of interceptive action: Differential effects of target size and speed. Experimental Brain Research, 148(4), 425-438. https://doi.org/10.1007/s00221-002-1309-0
  50. Tresilian, J. R., & Plooy, A. M. (2006). Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size. Experimental Brain Research, 171(4), 421-435. https://doi.org/10.1007/s00221-005-0286-5
  51. Tresilian, J. R., Plooy, A. M., & Marinovic, W. (2009). Manual interception of moving targets in two dimensions: Performance and space-time accuracy. Brain Research, 1250, 202-217. https://doi.org/10.1016/j.brainres.2008.11.001
  52. Zaal, F. T., & Michaels, C. F. (2003). The information for catching fly balls: Judging and intercepting virtual balls in a CAVE. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 537-555. https://doi.org/10.1037/0096-1523.29.3.537