• 제목/요약/키워드: Velocity of slurry flow

검색결과 33건 처리시간 0.034초

PTV를 이용한 수직관 내 슬러리유동의 고체입자 속도계측 연구 (A PTV Applied to Measuring the Solid Particle Velocity of Slurry Flow in a Vertical Pipe)

  • 양찬규;최종수;홍섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.213-219
    • /
    • 2001
  • In this paper, particle velocity of slurry flow, a kind of solid-particle two phase flow, was measured by using a particle tracking velocimetry. Particles are modeled by sphere-shaped glass whose diameters are 3mm, 5mm, and 7mm At first, a particle which is falling in the water is captured and analyzed to give their free falling velocity. The falling velocity was very high up to about 4m/sec in the air, which needs special algorithm for the accurate measurement. For the upwelling slurry flow in the straight duct, there are some noises caused by cavity. However, the effect was so small that it does not affect the measurement of large particles. From the preliminary study of applying the PTV to measurement of particle movement in slurry flow, we could find out the optimum value of parameters: threshold value., searching area radius and correlation area size.

  • PDF

Particle Image Velocimetry 기법을 이용하여, Chemical Mechanical Polishing 공정시 Slurry 유동장 측정 (Measurement of the Slurry Flow-Field during Chemical Mechanical Polishing)

  • 신상희;김문기;고영호;김호영;이재동;홍창기;윤영빈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.125-128
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some Previous works shows that RR is determined by production of pressure and velocity and NC is also largely affected by velocity of flow-field during CMP. This study is about the direct measurement of velocity of slurry during CMP and reconstruction whole flow-field by Particle Image Velocimetry(PIV) Techniques. Typical PIV system is tuned adequately for inspecting CMP and Slurry Flow-field is measured by changing both Pad RPM and Carrier RPM. The results show that velocity is majorly determined not by Carrier RPM, but by Pad RPM.

  • PDF

PIV를 이용한 Chemical Mechanical Polishing 공정 중의 연마용액 유동흐름 측정 (Visualization of the Slurry Flow-Field during Chemical Mechanical Polishing by PIV)

  • 신상희;김문기;윤영빈;고영호
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.48-51
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) is popularly used in production of semiconductor because of large area polishing ability probability of improvement for more integrated circuit. However, present CMP processing causes some non-uniformity errors which can be critical for highly integrated circuit. Previous studies predict that flow-field of slurry during CMP can create non-uniformity, but no quantitative measurement has conducted. In this study, using PIV, slurry velocity flow-field during CMP is measured by changing the ratio of RPM of pad and carrier with tuned PIV system adequate for small room in CMP machine and Cabot's non-groove pad Epad-A100. The result show that velocity of slurry is majorly determined by pad-rpm and the ratio of between carrier and pad rpm make some changes in streamlines.

  • PDF

배연탈황설비 흡수탑 내 연소가스 및 슬러리의 거동에 관한 수치해석적 연구 (Numerical Analysis on the Flue Gas Flow and Slurry Behavior in the Absorber of a Flue Gas Desulphurization (FGD) System)

  • 최청렬
    • 한국대기환경학회지
    • /
    • 제23권4호
    • /
    • pp.478-486
    • /
    • 2007
  • Numerical analysis had been performed to understand flow characteristics of the flue gas and slurry in the absorber of a flue gas desulphurization (FGD) system using computational fluid dynamics (CFD) technique. Two-fluid(Euler-Lagrangian) model had been employed to simulate physical phenomenon, which slurry particles injected through slurry spray nozzles fall down and bump into the flue gas inflowing through inlet duct. It was not necessary to adopt pre-defined pressure drop inside the absorber because interaction between flue gas and slurry particles was considered. Hundreds of slurry spray nozzles were considered with the spray velocity at the nozzles, swirl velocity and spreading angle. The results note that the flow disturbance of flue gas is found at the bottom of the absorber, and the current rising with high speed stream is observed in the opposite region of the inflow duct. The high speed stream is reduced as the flue gas goes up, because the high speed stream of flue gas dumps falling slurry particles due to momentum exchange between flue gas and slurry particles. In spite of some disproportion in slurry distribution inside the absorber, escape of slurry particles from the absorber facility is not observed. The pressure drop inside the absorber is mainly occurred at the bottom section.

3상 Slurry Bubble Column Reactor에서 기체유속에 따른 고체입자의 거동에 대한 연구 (Study on Effect of gas superficial velocity on particle behavior in three phased Slurry Bubble Column Reactor)

  • 양정훈;양정일;이호태;김학주;천동현;정헌
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.876-879
    • /
    • 2009
  • Fischer-Tropsch 합성 반응과 같은 slurry bubble column reactor에서는 반응 속도를 증진시키기 위해서는 서로 다른 상간의 접촉 면적을 최대화함으로써 물질 전달을 원활하게 유지하여야 한다. 특히 Fischer-Tropsch 합성 반응에서는 반응물인 기체가 촉매로서 기능하는 고체 표면으로의 external mass transfer가 효과적으로 이루어져야 하기 때문에 반응기 내의 기체의 거동뿐만 아니라 고체인 촉매의 분포에 대한 연구가 활발하게 이루어지고 있다. 따라서 본 연구에서는 반응기 내에 기체의 superficial velocity를 변화시키면서 기체의 hold up 뿐만 아니라 고체 입자의 분포특성에 대하여 관찰하였다. Superficial velocity가 증가함에따라 gas hold up의 경우, 일정하게 증가하다가 6 cm/sec 이상에서 그 증가폭이 감소하였다. 즉 6 cm/sec이상에서 turbulent flow regime을 형성하였다. 또한 고체입자의 분포 역시 기체의 superficial velocity가 증가함에따라 보다 균일하게 되는 것을 확인할 수 있었다.

  • PDF

Particle Image Velocimetry 기법을 이용한 CMP 공정의 Slurry유동 분석 (Velocity Measurements of Slurry Flows in CMP Process by Particle Image Velocimetry)

  • 김문기;윤영빈;고영호;홍창기;신상희
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.59-67
    • /
    • 2006
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some previous works show that RR is determined by production of pressure and velocity and NU is also largely affected by velocity of flowfield during CMP. This study is about the direct measurement of velocity of slurry during CMP and whole flowfield upon the non-groove pad by Particle Image Velocimetry(PIV). Typical PIV system is modified adequately for inspecting CMP and slurry flowfield is measured by changing both pad rpm and carrier rpm. We performed measurement with giving some variation in the kinds of pad. The results show that the flowfield is majorly determined not by Carrier but by Pad in the case of non-groove pad.

Combined bi-borehole technology for grouting and blocking of flowing water in karst conduits: Numerical investigation and engineering application

  • Pan, Dongdong;Zhang, Yichi;Xu, Zhenhao;Li, Haiyan;Li, Zhaofeng
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.391-405
    • /
    • 2022
  • A newly proposed grouting simulation method, the sequential diffusion solidification method was introduced into the numerical simulation of combined bi-borehole grouting. The traditional, critical and difficult numerical problem for the temporal and spatial variation simulation of the slurry is solved. Thus, numerical simulation of grouting and blocking of flowing water in karst conduits is realized and the mechanism understanding of the combined bi-borehole technology is promoted. The sensitivity analysis of the influence factors of combined bi-borehole grouting was investigated. Through orthogonal experiment, the influences of proximal and distal slurry properties, the initial flow velocity of the conduit and the proximal and distal slurry injection rate on the blocking efficiency are compared. The velocity variation, pressure variation and slurry deposition phenomenon were monitored, and the flow field characteristics and slurry outflow behavior were analyzed. The interaction mechanism between the proximal and distal slurries in the combined bi-borehole grouting is revealed. The results show that, under the orthogonal experiment conditions, the slurry injection rate has the greatest impact on blocking. With a constant slurry injection rate, the blocking efficiency can be increased by more than 30% when using slurry with weak time-dependent viscosity behavior in the distal borehole and slurry with strong time-dependent viscosity behavior in the proximal borehole respectively. According to the results of numerical simulation, the grouting scheme of "intercept the flow from the proximal borehole by quick-setting slurry, and grout cement slurry from the distal borehole" is put forward and successfully applied to the water inflow treatment project of China Resources Cement (Pingnan) Limestone Mine.

수직관내 고-액 슬러리 유동 계측 실험연구 (Experimental Study of Solid-water Slurry Flow in Vertical Pipe)

  • 최종수;홍섭;양찬규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.160-163
    • /
    • 2001
  • In order to develop a nodule conveying system through a flexible pipe out of the deep-seabed manganese nodule miner, an experimental study of the solid-water slurry flow in vertical pipe is performed as the first stage of total experiments. Hydraulic characteristics of the pipe slurry flow such as slip velocity, transport concentration and pressure gradient are investigated for the size of particle, load ratio, and flow rate of water. The higher the load ratio is, the larger the transport concentration and pressure gradient become. The bigger the size of particles is, the larger the pressure gradient becomes. The effectiveness of the flow rate to hydraulic performance is also investigated. This results are to be used for designing crusher and pump, and operating the conveying device.

  • PDF

Laminar Convective Heat Transfer from a Horizontal Flat Plate of Phase Change Material Slurry Flow

  • Kim Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.779-784
    • /
    • 2005
  • This paper presents the theory of similarity transformations applied to the momentum and energy equations for laminar, forced, external boundary layer flow over a horizontal flat plate which leads to a set of non-linear, ordinary differential equations of phase change material slurry(PCM Slurry). The momentum and energy equation set numerically to obtain the non-dimensional velocity and temperature profiles in a laminar boundary layer are solved. The heat transfer characteristics of PCM slurry was numerically investigated with similar method. It is clarified that the similar solution method of Newtonian fluid can be used reasonably this type of PCM slurry which has low concentration. The data of local wall heat flux and convective heat transfer coefficient of PCM slurry are higher than those of water more than 150$\~$200$\%$, approximately.

Experimental investigation of blocking mechanism for grouting in water-filled karst conduits

  • Zehua Bu;Zhenhao Xu;Dongdong Pan;Haiyan Li;Jie Liu;Zhaofeng Li
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.155-171
    • /
    • 2023
  • Aiming at the grouting treatment of water inflow in karst conduits, a visualized experiment system for conduit-type grouting blocking was developed. Through the improved water supply system and grouting system, and the optimized multisource information monitoring system, the real-time observation of diffusion and deposition of slurry, and the data acquisition of pressure and velocity during the whole process of grouting were realized, which breaks through the problem that the monitoring element is easy to fail due to slurry adhesion in conventional test system. Based on the grouting experiments in static and flowing water, the diffusion and deposition behavior of the quick-setting slurry under different working conditions were analyzed. The temporal and spatial variation behavior of the pressure and velocity were studied, and the blocking mechanism of the grouting were further revealed. The results showed that: (1) Under the flowing water condition, the counter-flow diffusion distance of slurry was negatively correlated with the flow water velocity and the volume ratio of cement and sodium silicate (C-S ratio), and positively correlated with the grouting volume. The slurry deposition thickness was negatively correlated with the flowing water velocity, and positively correlated with the grouting volume and C-S ratio. (2) The pressure increased slowly before blocking of the flowing water and rapidly after blocking in karst conduits. (3) With the continuous progress of grouting, the flowing water velocity decreased slowly first, then significantly, and finally tended to be stable. According to the research results, some engineering recommendations were put forward for the grouting treatment of the conduit-type water inflow disaster, which has been successfully applied in the treatment project of the China Resources Cement (Pingnan) Limestone Mine. This study provided some guidance and reference for the parameter optimization of grouting for the treatment projects of water inflow in karst conduits.