• 제목/요약/키워드: Velocity Ratio

검색결과 2,663건 처리시간 0.029초

PIV를 이용한 Weis-Fogh형 수차의 유동장 가시화 (Visualization of Flow Field of Weis-Fogh Type Water Turbine Using the PIV)

  • 노기덕
    • 대한기계학회논문집B
    • /
    • 제41권3호
    • /
    • pp.191-197
    • /
    • 2017
  • 본 연구는 Weis-Fogh형 수차모델의 비정상 유동장을 PIV를 이용해 가시화한 것이다. 실험은 비교적 효율이 높은 날개의 열림각 ${\alpha}=40^{\circ}$ 및 날개의 이동 속도에 대한 일정류의 속도비 U/V=1.5~2.5 범위 내에서 진행했다. 유동장은 각 실험 파라메터에 대해 열리는 과정, 병진운동의 과정 및 닫히는 과정으로 나누어 고찰되었으며, 그 결과를 요약하면 다음과 같다. 열리는 과정에서는 날개와 벽 사이에 유체가 흡입되며, 그 유입속도는 열림각이 클수록, 속도비가 클수록 증가했다. 병진운동의 과정에서 날개 압력면의 유체는 날개의 이동방향으로 움직였으며, 배면에서의 경계층의 두께는 속도비 2.0일 때 가장 작았다. 닫히는 과정에서는 날개와 벽 사이에서 유체가 분출되며, 그 분출속도는 열림각이 작을수록 증가했지만, 속도비와는 관계가 없었다.

Comparative study of analytical models of single-cell tornado vortices based on simulation data with different swirl ratios

  • Han Zhang;Hao Wang;Zhenqing Liu;Zidong Xu;Boo Cheong Khoo;Changqing Du
    • Wind and Structures
    • /
    • 제36권3호
    • /
    • pp.161-174
    • /
    • 2023
  • The analytical model of tornado vortices plays an essential role in tornado wind description and tornado-resistant design of civil structures. However, there is still a lack of guidance for the selection and application of tornado analytical models since they are different from each other. For single-cell tornado vortices, this study conducts a comparative study on the velocity characteristics of the analytical models based on numerically simulated tornado-like vortices (TLV). The single-cell stage TLV is first generated by Large-eddy simulations (LES). The spatial distribution of the three-dimensional mean velocity of the typical analytical tornado models is then investigated by comparison to the TLV with different swirl ratios. Finally, key parameters are given as functions of swirl ratio for the direct application of analytical tornado models to generate full-scale tornado wind field. Results show that the height of the maximum radial mean velocity is more appropriate to be defined as the boundary layer thickness of the TLV than the height of the maximum tangential mean velocity. The TLV velocity within the boundary layer can be well estimated by the analytical model. Simple fitted results show that the full-scale maximum radial and tangential mean velocity increase linearly with the swirl ratio, while the radius and height corresponding to the position of these two velocities decrease non-linearly with the swirl ratio.

이젝터 구동관로의 직경비와 끝단의 위치 변화에 따른 유동특성 (Flow Characteristics of Ejector Driven Pipe According to the Changes of Diameter Ratio and End Position)

  • 김노형
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.45-51
    • /
    • 2016
  • This study conducted CFD analysis on the mean velocity vector of distribution of the ejector driven pipe while changing the inlet velocity to 1 m/s at the diameter ratio of diffuser of 1:3, 1:2.25, 1:1.8 with the end position of driven pipe at 1, 1.253, 1.333, 1.467 respectively, which used $k-{\varepsilon}$/High Reynolds Number for the turbulence model, SIMPLE method for the analysis algorithm, and PIV experiment to verify the CFD analysis. As a result of the CFD analysis the optimum diameter ratio of ejector driven pipe was 1:3, the optimum end position of driven pipe was 1.333 for the diameter ratio of 1:3, 1:2.25, 1:1.8 and the PIV experiment obtained the same result as the CFD analysis. Therefore, the numerical analysis of the flow characteristics of ejector can be used for the optimum design implementation on ejector system.

제한공간에 설치된 제트팬의 기류특성 예측 (Prediction of the Flow Characteristics of Jet Fan in a Confined Space)

  • 이재헌;환유준;김경환;임윤철;오명도;김종필
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.206-213
    • /
    • 2002
  • In this paper, the flow characteristics of an axial fan spraying isothermal compact jet in a confined space were investigated by the experimental methods, the numerical method, and the free jet theory According to the results, the numerical result and the experimental result are agreed well qualitatively and different quantitatively within $\pm1.0%$ for the centerline velocity, the entrainment ratio, and the maximum throw. However, the free jet theory can reasonably predict the centerline velocity except the entrainment ratio and the maximum throw. In other words, the entrainment ratio and the maximum throw by 1.he free jet theory are hard to estimate the characteristics of jet because of restriction of c confined space.

트랙터 8단 자동변속기 기어 열 설계 (Gear Train Design of 8-Speed Automatic Transmission for Tractor)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권2호
    • /
    • pp.30-36
    • /
    • 2013
  • Tractor is a farm vehicle that is designed to provide a high tractive effort at low speed. It is used for versatile agricultural tasks such as hauling a trailer, tillage, mowing and construction work. Most older tractors use a manual transmission. However, as the intensity of work increases, tractors equipped with automatic transmission become popular due to the work convenience. In order to give the operator a large degree of control in field work, 24 gears with automatic 8-speed and manual 3-speed are arranged in transmission. This paper deals with the gear train that is designed for 8-speed automatic transmission by the engagement of multi-disk clutches. The gear ratio for each speed as well as power transmission mechanism is analyzed through velocity analysis. In addition, constraints of mesh gear ratio are derived by investigating the power flow path in velocity diagram for the given 8-speed gear ratio.

Effects of Main Shaft Velocity on Turbidity and Quality of White Rice in a Rice Processing System

  • Cho, Byeong-Hyo;Kang, Tae-Hwan;Won, Jin-Ho;Kang, Shin-Hyeong;Lee, Hee-Sook;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.69-74
    • /
    • 2017
  • Purpose: The purpose of this study is to analyze turbidity and quality characteristics of white rice as a function of main shaft blast velocity and to verify the optimum processing conditions in the cutting type white rice processing system (CTWRPS). Methods: Sindongjin, one of the rice varieties, which used to be produced in Gimje-si, Jeollabuk-do, in 2015, was used as the experimental material. Turbidity and quality characteristics of white rice were measured at three different main shaft blast velocities: 25, 30, and 35 m/s. The amount of test material used for a single experiment was 20 kg, and after processing, whiteness was found to be $42.5{\pm}0.5$, following which, turbidity and quality characteristics were measured. Results: Turbidity decreased with increase in the shaft blast velocity, and as a result, was lowest at 35 m/s of shaft blast velocity among all the other experiment velocities. The trend of cracked rice ratios was similar to the turbidity. Broken rice ratio turned out to be less than 2.0% in all the test conditions. In the first stage of processing, the processing pressure decreased as the main shaft blast velocity increased. Additionally, in the second stage of processing, the processing pressure was at its lowest value at the main shaft blast velocity of 35 m/s. Energy consumption, too, decreased as the main shaft blast velocity was increased. Conclusions: From the above results, it is concluded that the main shaft blast velocity of 35 m/s is best for reducing turbidity and producing high quality rice in a CTWRPS.

여름철 열대야 발생시 탑상형 아파트의 실내온열환경에 대한 연구 (A Study on Indoor Thermal Environment in an Tower Type Apartment House at Tropical Nights)

  • 장현재;김형진
    • 설비공학논문집
    • /
    • 제22권1호
    • /
    • pp.20-25
    • /
    • 2010
  • In this study, As a basic research for improving indoor thermal environment at tower type apartment houses, specifications of heat storage and heat emission in the structures of apartment houses were investigated, and the ratio of indoor and outdoor air velocity at tower type apartment house was examined, too. Indoor temperature at night time was higher than outdoor air temperature because heat emission from the structure of wall, ceiling and floor those are constructed by use of reinforced concrete which has large heat capacity. The ratio of indoor and outdoor air velocity was lower than 0.1 and this was caused by the plan of tower type apartment house. PMV was in the range of 0.3~1.9, and was about 1.0 (it means slightly warm) at 10 : 00 p.m.. To improve indoor thermal environment in summer season at tower type apartment houses, it needs more investigation on specifications of heat storage and heat emission in the structure including winter season, and on the improvement of the ratio of indoor and outdoor air velocity.

철근비 및 충돌속도가 RC 슬래브의 국부손상에 미치는 효과 (Effect of Reinforcement Ratio and Impact Velocity on Local Damage of RC Slabs)

  • 최현;정철헌;유현경;김상윤
    • 대한토목학회논문집
    • /
    • 제31권4A호
    • /
    • pp.311-321
    • /
    • 2011
  • RC 슬래브에 배근되는 철근비와 충격체의 충돌속도가 국부손상에 미치는 영향을 평가하기 위하여 일련의 충돌해석을 수행하였다. 해석결과, 철근비는 관입깊이 및 관통두께에 별 다른 영향을 미치지 않았으며, 후면 콘크리트의 탈락면적에는 큰 영향을 미치는 것으로 나타났다. 충격체의 충돌속도가 증가할수록 철근콘크리트 슬래브의 국부손상 정도는 증가하는 경향을 보였다. 이상의 해석결과는 격납건물 및 구조물의 내충격설계시 유용한 자료로 활용될 수 있을 것으로 기대된다.

폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실 (Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction)

  • 이상우;김용범
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.

노즐의 내부형상 및 스월러 베인각의 변화가 선단거리에 따른 분무특성에 미치는 영향 (Effect of Internal Geometry and Swirler Vane Angle of Nozzle on Spray Characteristics with Distance from Nozzle Tip)

  • 정홍철;최경민;김덕줄
    • 한국분무공학회지
    • /
    • 제10권4호
    • /
    • pp.1-7
    • /
    • 2005
  • The purpose of this study is to investigate the effect of swirler vane angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single spray. The characteristics of sprat's have been investigated by measuring the spray angle, droplet size and velocity Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler vane angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber The effect of vane angle un the spray characteristics was greater than the aspect ratio of swirl chamber for single spray.

  • PDF