DOI QR코드

DOI QR Code

Effect of Reinforcement Ratio and Impact Velocity on Local Damage of RC Slabs

철근비 및 충돌속도가 RC 슬래브의 국부손상에 미치는 효과

  • 최현 (단국대학교 토목환경공학과) ;
  • 정철헌 (단국대학교 토목환경공학과) ;
  • 유현경 (단국대학교 토목환경공학과) ;
  • 김상윤 (한국원자력안전기술원 공학연구실)
  • Received : 2010.12.30
  • Accepted : 2011.05.20
  • Published : 2011.08.31

Abstract

To analysis the effect of reinforcement ratio and impact velocity on local damage, a series of impact analyses are performed to predict local effects. According to these results, the reinforcement ratio has no effect on the penetration depth and perforation thickness, but notable change to the scabbing area were observed. The higher the missile velocity becomes, the greater the degree of local damage to the reinforced concrete slabs is. Analysis results will be useful in the impact-resistance design of containment buildings and structures.

RC 슬래브에 배근되는 철근비와 충격체의 충돌속도가 국부손상에 미치는 영향을 평가하기 위하여 일련의 충돌해석을 수행하였다. 해석결과, 철근비는 관입깊이 및 관통두께에 별 다른 영향을 미치지 않았으며, 후면 콘크리트의 탈락면적에는 큰 영향을 미치는 것으로 나타났다. 충격체의 충돌속도가 증가할수록 철근콘크리트 슬래브의 국부손상 정도는 증가하는 경향을 보였다. 이상의 해석결과는 격납건물 및 구조물의 내충격설계시 유용한 자료로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. 정철헌, 최 현, 이정휘, 최강룡(2010) 충격하중이 작용하는 RC 슬래브의 국부손상 산정식에 대한 고찰, 대한토목학회논문집, 대한토목학회, 제30권 제6A호, pp. 543-560.
  2. ACE (1946) Fundamentals of protective structures, army corps of engineers, Report AT120 AT1207821, Office of the Chief of Engineers.
  3. Adeli, H. and Amin, A.M. (1985) Local effects of impactors on concrete structures, Nuclear Engineering and Design, Vol. 88, pp. 301-317. https://doi.org/10.1016/0029-5493(85)90165-7
  4. Bangash, M.Y.H. (1989) Concrete and concrete structures: numerical modelling and application, Elsevier Applied Science, London.
  5. Berriaud, C., Sokolovsky, A., Gueraud, R., Dulac, J., and Labrot, R. (1978) Local behaviour of reinforced concrete walls under missile impact, Nuclear Engineering and Design, Vol. 45, No. 2, pp. 457-469. https://doi.org/10.1016/0029-5493(78)90235-2
  6. Bischoff, P.H. and Perry, S.H. (1995) Impact behavior of plain concrete loaded in uniaxial compression, Journal of Engineering Mechanics, pp. 685-693.
  7. Chang, W.S. (1981) Impact of solid missiles on concrete barriers, Journal of the Structural Division, ASCE, Vol. 107, No. 2, pp. 257-271.
  8. Chelapati, C.V., Kennedy, R.P., and Wall, I.B. (1972) Probabilistic assessment of aircraft hazard for nuclear structures, Nuclear Engineering and Design, Vol. 19, No. 2, pp. 333-364. https://doi.org/10.1016/0029-5493(72)90136-7
  9. Degen, P.P. (1980) Perforation of reinforced concrete slabs by rigid missiles, Journal of the Structural Division, ASCE, Vol. 106, No. 7, pp. 1623-1642.
  10. Gwaltney, R.C. (1968) Missile generation and protection in light water-cooled reactor power plants, ORNL NSIC-22, Oak Ridge, TN, Oak Ridge National Laboratory.
  11. Haldar, A. and Hamieh, H.A. (1984) Local effect of solid missiles on concrete structures, Journal of Structural Engineering, ASCE, Vol. 110, No. 5, pp. 948-960. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:5(948)
  12. Hughes, G. (1984) Hard missile impact on reinforced concrete, Nuclear Engineering and Design, Vol. 77, pp. 23-35. https://doi.org/10.1016/0029-5493(84)90058-X
  13. Kar, A.K. (1978) Local effects of tornado generated missiles, Journal of the Structural Division, ASCE, Vol. 104, No. 5, pp. 809-816.
  14. Kennedy, R.P. (1966) Effects of an aircraft crash into a concrete reactor containment building, Anaheim, CA Holmes & Narver Inc.
  15. Kennedy, R.P. (1976) A Review of procedures for the analysis and design of concrete structures to resist missile impact effects, Nuclear Engineering and Design, Vol. 37, pp. 183-203. https://doi.org/10.1016/0029-5493(76)90015-7
  16. Kojima, I. (1991) An Experimental study on local behaviour of reinforced concrete slabs to missile impact, Nuclear Engineering and Design, Vol. 130, pp. 121-132. https://doi.org/10.1016/0029-5493(91)90121-W
  17. Li, Q.M., Reid, S.R., Wen, H.M., and Telford, A.R. (2005) Local impact effects of hard missiles on concrete targets, International Journal of Impact Engineering, Vol. 32, pp. 224-284. https://doi.org/10.1016/j.ijimpeng.2005.04.005
  18. Livermore Software Technology Corporation. (2007) LS-DYNA Keyword User's Manual, California.
  19. Murray, Y.D. (2007) Users Manual for LS-DYNA Concrete Material Model 159, U.S. Department of Transportation Federal Highway Administration.
  20. NDRC (1946) Effects of impact and explosion, national defence research committee, Washington, DC, Summary Technical Report of Division 2, Vol. 1.
  21. Samuely, F.J., Humann, C. W., and Britain, G. (1939) Civil protection, The Architectural press.
  22. Sugano, T., Tsubota, H., Kasai, Y., Koshika N., Itoh, C., Shirai, K., Riesemenn von W.A., Bickel, D.C., and Parks, M.B. (1993) Local damage to reinforced concrete structures caused by impact of aircraft engine missiles. Part 2. Evaluation of Test Results, Nuclear Engineering and Design, Vol. 140, pp. 407-423. https://doi.org/10.1016/0029-5493(93)90121-O
  23. Su, X.Y., Yu, T.X., and Reid, S.R. (1995) Inertia-sensitive impact energy-absorbing structures Part II: Effect of Strain Rate, International Journal of Impact Engineering, Vol. 16, No. 4, pp. 673-689. https://doi.org/10.1016/0734-743X(94)00062-2