• Title/Summary/Keyword: Vehicular Communication

Search Result 296, Processing Time 0.027 seconds

Comparative Study of GPS-Integrated Concrete Supply Management using Discrete Event Simulation

  • Zekavat, Payam Rahnamayie;Mortaheb, Mohammad Mehdi;Han, Sangwon;Bernold, Leonhard
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.31-40
    • /
    • 2014
  • The management of vehicular supply of "perishable" construction material, such as concrete mixes, faces a series of uncertainties such as weather, daily traffic patterns and accidents. Presented in this paper is a logistics control model for managing a hauling fleet with interrelated processes at both ends and queue capacities. Discrete event simulation is used to model the complex interactions of production units and the randomness of the real world. Two alternative strategies for ready mix concrete delivery, with and without an off-site waiting queue, are studied to compare supply performance. Secondly, the paper discusses the effect of an agent-based GPS tracking system providing real-time travel data that lessens the uncertainty of trucking time. The results show that the combination of GPS information with off-site queuing reduces productivity loss and process wastes of concrete placement as well as the idleness of supply trucks when crew or pump experience an unexpected stoppage.

Efficient FPGA Implementation of AES-CCM for IEEE 1609.2 Vehicle Communications Security

  • Jeong, Chanbok;Kim, Youngmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Vehicles have increasingly evolved and become intelligent with convergence of information and communications technologies (ICT). Vehicle communications (VC) has become one of the major necessities for intelligent vehicles. However, VC suffers from serious security problems that hinder its commercialization. Hence, the IEEE 1609 Wireless Access Vehicular Environment (WAVE) protocol defines a security service for VC. This service includes Advanced Encryption Standard-Counter with CBC-MAC (AES-CCM) for data encryption in VC. A high-speed AES-CCM crypto module is necessary, because VC requires a fast communication rate between vehicles. In this study, we propose and implement an efficient AES-CCM hardware architecture for high-speed VC. First, we propose a 32-bit substitution table (S_Box) to reduce the AES module latency. Second, we employ key box register files to save key expansion results. Third, we save the input and processed data to internal register files for secure encryption and to secure data from external attacks. Finally, we design a parallel architecture for both cipher block chaining message authentication code (CBC-MAC) and the counter module in AES-CCM to improve performance. For implementation of the field programmable gate array (FPGA) hardware, we use a Xilinx Virtex-5 FPGA chip. The entire operation of the AES-CCM module is validated by timing simulations in Xilinx ISE at a speed of 166.2 MHz.

An Authentication Scheme for Emergency Vehicle Priority Transit Service in VANET (VANET 기반의 긴급 차량 우선통과 서비스를 위한 인증 기법)

  • Yoon, Young-Kyun;Jung, Sou-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.749-757
    • /
    • 2008
  • In this paper, we propose an authentication scheme for EVPT (Emergency Vehicle Priority Transit) service in Vehiclar Ad-hoc Networks (VANET) enable a variety of vehicle comfort services, traffic management applications, and infotainment services. These are the basis for a new generation of preventive and active safety functions. By intelligently controlling signalling at intersections, providing additional information to the driver and warning the driver in critical situations. we therefore focus on vehicle-to-infrastructure communication for the authentication between emergency vehicles and traffic lights system. This authentication process should identify the vehicle, and provide privacy protection.

Joint Relay Selection and Resource Allocation for Cooperative OFDMA Network

  • Lv, Linshu;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.3008-3025
    • /
    • 2012
  • In this paper, the downlink resource allocation of OFDMA system with decode-and-forward (DF) relaying is investigated. A non-convex optimization problem maximizing system throughput with users' satisfaction constraints is formulated with joint relay selection, subcarrier assignment and power allocation. We first transform it to a standard convex problem and then solve it by dual decomposition. In particular, an Optimal resource allocation scheme With Time-sharing (OWT) is proposed with combination of relay selection, subcarrier allocation and power control. Due to its poor adaption to the fast-varying environment, an improved version with subcarrier Monopolization (OWM) is put forward, whose performance promotes about 20% compared with that of OWT in the fast-varying vehicular environment. In fact, OWM is the special case of OWT with binary time-sharing factor and OWT can be seen as the tight upper bound of the OWM. To the best of our knowledge, such algorithms and their relation have not been accurately investigated in cooperative OFDMA networks in the literature. Simulation results show that both the system throughput and the users' satisfaction of the proposed algorithms outperform the traditional ones.

SVC: Secure VANET-Assisted Remote Healthcare Monitoring System in Disaster Area

  • Liu, Xuefeng;Quan, Hanyu;Zhang, Yuqing;Zhao, Qianqian;Liu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1229-1248
    • /
    • 2016
  • With the feature of convenience and low cost, remote healthcare monitoring (RHM) has been extensively used in modern disease management to improve the quality of life. Due to the privacy of health data, it is of great importance to implement RHM based on a secure and dependable network. However, the network connectivity of existing RHM systems is unreliable in disaster area because of the unforeseeable damage to the communication infrastructure. To design a secure RHM system in disaster area, this paper presents a Secure VANET-Assisted Remote Healthcare Monitoring System (SVC) by utilizing the unique "store-carry-forward" transmission mode of vehicular ad hoc network (VANET). To improve the network performance, the VANET in SVC is designed to be a two-level network consisting of two kinds of vehicles. Specially, an innovative two-level key management model by mixing certificate-based cryptography and ID-based cryptography is customized to manage the trust of vehicles. In addition, the strong privacy of the health information including context privacy is taken into account in our scheme by combining searchable public-key encryption and broadcast techniques. Finally, comprehensive security and performance analysis demonstrate the scheme is secure and efficient.

A Linear Precoding Technique for OFDM Systems with Cyclic Delay Diversity

  • Hui, Bing;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.5
    • /
    • pp.253-264
    • /
    • 2008
  • Cyclic delay diversity (CDD) is considered a simple approach to exploit the frequency diversity, to improve the system performance in orthogonal frequency division multiplexing (OFDM) systems. Also, the linear precoding technique can significantly improve the performance of communication systems by exploiting the channel state information (CSI). In order to achieve enhanced performance, we propose applying linear precoding to the conventional CDD-OFDM transmit diversity schemes over Rayleigh fading channels. The proposed scheme works effectively with the accurate CSI in time-division-duplex (TDD) OFDM systems with CDD, where the reciprocity is assumed instead of channel state feedback. For a BER of $10^{-4}$ and the mobility of 3 km/h, simulation results show that a gain of 6 dB is achieved by the proposed scheme over both flat fading and Pedestrian A (Ped A) channels, compared to the conventional CDD-OFDM system. On the other hand, for a mobility of 120 km/h, a gain of 2.7 dB and 3.8 dB is achieved in flat fading and Vehicular A (Veh A) channels, respectively.

Position-based Routing Algorithm for Improving Reliability of Inter-Vehicle Communication

  • Ryu, Min-Woo;Cha, Si-Ho;Koh, Jin-Gwang;Kang, Seok-Joong;Cho, Kuk-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.8
    • /
    • pp.1388-1403
    • /
    • 2011
  • A vehicular ad-hoc network (VANET) consists of vehicles that form a network without any additional infrastructure, thus allowing the vehicles to communicate with each other. VANETs have unique characteristics, including high node mobility and rapidly changing network topology. Because of these characteristics, routing algorithms based on greedy forwarding such as greedy perimeter stateless routing (GPSR) are known to be very suitable for a VANET. However, greedy forwarding just selects the node nearest to the destination node as a relay node within its transmission range. This increases the possibility of a local maximum and link loss because of the high mobility of vehicles and the road characteristics in urban areas. Therefore, this paper proposes a reliability-improving position-based routing (RIPR) algorithm to solve those problems. The RIPR algorithm predicts the positions, velocities, and moving directions of vehicles after receiving beacon messages, and estimates information about road characteristics to select the relay node. Thus, it can reduce the possibility of getting a local maximum and link breakage. Simulation results using ns-2 revealed that the proposed routing protocol performs much better than the existing routing protocols based on greedy forwarding.

Routing Protocols for VANETs: An Approach based on Genetic Algorithms

  • Wille, Emilio C. G.;Del Monego, Hermes I.;Coutinho, Bruno V.;Basilio, Giovanna G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.542-558
    • /
    • 2016
  • Vehicular Ad Hoc Networks (VANETs) are self-configuring networks where the nodes are vehicles equipped with wireless communication technologies. In such networks, limitation of signal coverage and fast topology changes impose difficulties to the proper functioning of the routing protocols. Traditional Mobile Ad Hoc Networks (MANET) routing protocols lose their performance, when communicating between vehicles, compromising information exchange. Obviously, most applications critically rely on routing protocols. Thus, in this work, we propose a methodology for investigating the performance of well-established protocols for MANETs in the VANET arena and, at the same time, we introduce a routing protocol, called Genetic Network Protocol (G-NET). It is based in part on Dynamic Source Routing Protocol (DSR) and on the use of Genetic Algorithms (GAs) for maintenance and route optimization. As G-NET update routes periodically, this work investigates its performance compared to DSR and Ad Hoc on demand Distance Vector (AODV). For more realistic simulation of vehicle movement in urban environments, an analysis was performed by using the VanetMobiSim mobility generator and the Network Simulator (NS-3). Experiments were conducted with different number of vehicles and the results show that, despite the increased routing overhead with respect to DSR, G-NET is better than AODV and provides comparable data delivery rate to the other protocols in the analyzed scenarios.

Broadcasting Message Reduction Methods in VANET

  • Makhmadiyarov, Davron;Hur, Soojung;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.1
    • /
    • pp.42-49
    • /
    • 2009
  • Most Vehicular Ad hoc Network (VANET) applications rely heavily on broadcast transmission of traffic related information to all reachable nodes within a certain geographical area. Among various broadcast approaches, flooding is the first broadcasting technique. Each node rebroadcasts the received message exactly once, which results in broadcast storm problems. Some mechanisms have been proposed to improve flooding in Mobile Ad hoc Networks (MANET), but they are not effective for VANET and only a few studies have addressed this issue. We propose two distance-based and timer-based broadcast suppression techniques: 15P(15percent) and slotted 15P. In the first (distance based) scheme, node's transmission range is divided into three ranges (80%,15%and5%). Only nodes within 15% range will rebroadcast received packet. Specific packet retransmission range (15%) is introduced to reduce the number of messages reforwarding nodes that will mitigate the broadcaststorm. In the second (timer-based) scheme, waiting time allocation for nodes within 15% range isused to significantly reduce the broadcaststorm. The proposed schemes are distributed and reliedon GPS information and do not requireany other prior knowledge about network topology. To analyze the performance of proposed schemes, statistics such as link load and the number of retransmitted nodes are presented. Our simulation results show that the proposed schemes can significantly reduce link load at high node densities up to 90 percent compared to a simple broadcast flooding technique.

  • PDF

Reliable Multicast MAC Protocol for Cooperative Autonomous Vehicles (협력적 자율 차량을 위한 신뢰성있는 멀티케스트 MAC 프로토콜)

  • Kim, Jungsook;Kim, Juwan;Choi, Jeongdan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.3
    • /
    • pp.180-187
    • /
    • 2014
  • This paper introduces reliable multicast MAC protocol for cooperative unmanned vehicles. cooperative unmanned vehicles communicate with infrastructure and other unmanned vehicles in order to increase driving safety. They exchange information related to driving and thus it requires real-time and reliable multicast. However, the international vehicular communication standard, IEEE 802.11p WAVE, does not provide a reliable multicast scheme on the MAC layer. To address the problems of reliability, we propose a reliable multicast protocol called WiVCL, which avoids contention and collision. Our evaluation shows that the WiVCL achieves a high degree of reliability and real-time features.