
IEIE Transactions on Smart Processing and Computing, vol. 6, no. 2, April 2017
https://doi.org/10.5573/IEIESPC.2017.6.2.133 133

IEIE Transactions on Smart Processing and Computing

Efficient FPGA Implementation of AES-CCM for IEEE
1609.2 Vehicle Communications Security

Chanbok Jeong1 and Youngmin Kim2

1 IVI Business Division, LG Electronics chanbok.jeong@lge.com
2 Computer and Information Engineering, Kwangwoon University, Seoul, Korea youngmin@kw.ac.kr

* Corresponding Author: Youngmin Kim

Received January 9, 2017; Accepted January 27, 2017; Published April 30, 2017

* Short Paper

Abstract: Vehicles have increasingly evolved and become intelligent with convergence of
information and communications technologies (ICT). Vehicle communications (VC) has become
one of the major necessities for intelligent vehicles. However, VC suffers from serious security
problems that hinder its commercialization. Hence, the IEEE 1609 Wireless Access Vehicular
Environment (WAVE) protocol defines a security service for VC. This service includes Advanced
Encryption Standard–Counter with CBC-MAC (AES-CCM) for data encryption in VC. A high-
speed AES-CCM crypto module is necessary, because VC requires a fast communication rate
between vehicles. In this study, we propose and implement an efficient AES-CCM hardware
architecture for high-speed VC. First, we propose a 32-bit substitution table (S_Box) to reduce the
AES module latency. Second, we employ key box register files to save key expansion results.
Third, we save the input and processed data to internal register files for secure encryption and to
secure data from external attacks. Finally, we design a parallel architecture for both cipher block
chaining message authentication code (CBC-MAC) and the counter module in AES-CCM to
improve performance. For implementation of the field programmable gate array (FPGA) hardware,
we use a Xilinx Virtex-5 FPGA chip. The entire operation of the AES-CCM module is validated by
timing simulations in Xilinx ISE at a speed of 166.2 MHz.

Keywords: AES-CCM, AES, V2X security, IEEE 1609.2, WAVE, Vehicle communications, FPGA

1. Introduction

Nowadays, many companies and researchers have been
investigating autonomous vehicles, electric vehicles, and
connected cars to develop the intelligent traffic system
(ITS). Vehicle communications (VC) or networking
technology in general is an essential element for the
success of these systems. The IEEE developed and
proposed the Wireless Access Vehicular Environment
(WAVE) protocol [1, 2], which includes the IEEE 1609.2
standard for security services to provide reliable VC. A
security service is a critical part of VC, because VC is
strongly related to the safety of passengers and cars. For
example, researchers recently demonstrated that they could
control a vehicle (e.g., the engine, brakes, and instrument
panel) through the controller area network (CAN) bus [3,
4]. If an attacker uses these kinds of techniques, and the
VC network becomes vulnerable, there will be serious

vehicle safety problems.
Many related works go into the specifics of the

security problem in vehicle communications. For
example, malicious cars can broadcast fake positions
through VC [5-7] in a classic example of “anti-social”
behavior. These malicious cars must be detected and
isolated to ensure the integrity of position information
in VC. In other words, the reliability of the position
information for cars must be protected in VC, but this
adds significant overhead to the system. VC has a
unique characteristic that requires rigorous real-time
constraints. Thus, security services in VC should also
meet timing constraints.

Algredo-Badillo et al. [8] designed the Advanced
Encryption Standard–Counter with Cipher Block
Chaining-Message Authentication Code Protocol (AES-
CCMP) and implemented it in field programmable gate

Jeong et al.: Efficient FPGA Implementation of AES-CCM for IEEE 1609.2 Vehicle Communications Security

134

array (FPGA) hardware for IEEE 802.11i-2004. They
carefully analyzed the Advanced Encryption Standard–
Counter with CBC-MAC (AES-CCM) architecture to
exploit the parallelization of some processes; this design is
highly specialized in processing modules. They intended to
design a fast and simple iterative AES-CCMP hardware
architecture with low hardware requirements. The
implemented Xilinx Virtex-4 FPGA consists of 1921 slices
and 20 block memories and has 1.876 Gbps data
throughput at 149 MHz. They also compared the hardware
and software implementations in their paper. The software
implementation had a higher frequency and throughput,
but resulted in lower efficiency (e.g., data length per clock
frequency) than the hardware implementation.

The properties of Car-to-X communication (C2X) were
investigated [9, 10]. C2X, in general, requires extremely
low latency. In particular, at high speeds, when passive
and active safety events occur, it requires millisecond
latency. Thus, an additional security service is a serious
overhead in C2X. Furthermore, cryptography plays a
major role in securing VC because a C2X security service
must provide an authentication and encryption method to
protect short message data from many other vehicle
objects. In the worst case scenario, the number of
neighborhood cars can reach 200 with a beaconing rate of
1–10 Hz. To protect data, each vehicle needs to have
between 400 and 4000 verifications or decryptions per
second to exchange data. A parallel cryptography
architecture in FPGA hardware and a hybrid system using
the hardware and software co-design for a C2X security
service was proposed.

Data throughput and minimum delay limits of the
802.11p VC protocol were analyzed [11]. The minimum
delay in VC for a 27 Mbps data rate with 1000 bytes of
payload data is 565.5 μs. Therefore, overall encryption
processing must be completed no later than the minimum
delay requirement.

In this paper, we design an efficient AES-CCM
architecture by using Verilog Hardware Description
Language (Verilog-HDL) and implement it in FPGA
hardware. AES-CCM inherently has a significant influence
on the workload in VC because of the repeated operations
of the data encryption modules. To resolve this issue, we
use a hardware implementation method for the AES-CCM
module by proposing several design techniques in the
FPGA to increase data processing throughput and reduce
latency. For an efficient and effective hardware
implementation, our main contributions can be
summarized as follows.

·We propose a 32-bit parallel operations unit in the
substitution box (S_Box), which is originally an
eight-bit unit in the standard to improve the overall
latency of the AES module.

·We employ key box registers to save key expansion
results because key expansion operations are not
always required for every AES iteration.

·We use internal register files bearing high usage of
FPGA slices to store the input Plaintext and the
output Ciphertext to protect the data from external
attack.

·The CBC-MAC module and the AES counter in
AES-CCM are implemented in a parallel architecture
to improve throughput.

The rest of this paper is organized as follows. Section 2

explains the AES encryption algorithm and standard.
Section 3 explains the methodology in AES-CCM
implementations. Section 4 presents the FPGA designs for
the proposed AES and AES-CCM modules. Simulation
results are discussed in Section 5, followed by conclusions
in Section 6.

2. Advanced Encryption Standard

AES is the National Institute of Standards and
Technology (NIST) encryption standard substituting for
the Data Encryption Standard (DES) algorithm [12, 13].
DES has been known to have performance limitations and
security issues when used for VC in an ITS [12, 13].

To develop AES, NIST set the following standard
criteria: minimum system resource usage, open source
algorithm, capable of hardware and software
implementation, robust to any security attack, low
complexity for encryption calculation, and can be
implemented in any system environment [12, 13]. As a
result, AES has variable key lengths of 128, 192, and 256
bits and a 128-bit wide input block. The inserted input key
is expanded as shown in Table 1.

Fig. 1 presents the general round structure of AES
operation. The substitute bytes (SubByte) mode performs a
byte-to-byte substitution of input data or previously
encrypted data using a substitution table (S_Box). The
shift row operation (ShiftRow) shifts the row-wise byte
data according to the row index. The mix column process
is for permutation of the column-wise bit data using a
Galois field, GF(82). Mix column is similar to ShiftRow,
but ShiftRow is a row-wise byte permutation, and mix
column is a column-wise bit permutation. The Galois field
is a finite field for an AES mix column operation. Add

Table 1. Key and Input Data Sizes of AES.

Input Key
Size

4 Words /
128 Bits

6 Words /
192 Bits

8 Words /
128 Bits

Expanded
Key Size

44 Words /
1408 Bits

52 Words /
1664 Bits

60 Words /
1920 Bits

Fig. 1. General AES round structure in AES standard.

IEIE Transactions on Smart Processing and Computing, vol. 6, no. 2, April 2017

135

round key operates bit-wise XOR for the mixed column
results with the expanded key from the key expansion
process. Not all the processes shown in Fig. 1 are applied
to the initial and final rounds. The add round key process
only operates in the initial round, and the ShiftRow,
SubByte, and add round key processes are required in the
final round [12, 13]. AES is the critical part of AES-CCM
performance because it is an iterative process in AES-
CCM. Therefore, careful analysis for an optimized AES
implementation is extremely important.

3. AES-CCM

AES-CCM consists of the counter module and the
cipher block chaining message authentication code (CBC-
MAC) using AES as a NIST SP 800-38C encryption
standard. The WAVE protocol uses this AES-CCM for
data encryption. AES-CCM is a unique symmetric key
encryption algorithm for the WAVE 1609.2 security
standard; thus, all payload data must be encrypted by AES-
CCM to be used under the WAVE protocol [2].

Fig. 2 shows the entire structure of the AES-CCM
operation. As shown in the figure, first, the Plaintext is
entered and formatted on the basis of the AES-CCM
standard in the formatting function module to make a 128-
bit data pattern. Then, it is processed by the CBC-MAC
and the counter block in parallel. Finally, the encrypted
Ciphertext is generated from the counter block, and the
message integrity code (MIC) data are obtained from the
XOR operations between the CBC-MAC results (MAC
data) and the counter block (1st counter block) results.
CBC-MAC validates the authenticity of data by using the
cipher block chaining method, which chains all input data;
the chaining data are truncated from MAC data for data
authenticity.

The counter ensures the confidentiality of data by using
the encryption process of the sequential counter blocks.
The encrypted counter block is combined with nonce data
and the counter index. The CBC-MAC and the counter use
the same encryption key for AES-CCM data encryption
[14].

AES-CCM is used in not only the IEEE 1609.2 WAVE
security protocol but also in IEEE 802.11 and IEEE
802.15.4. Although other data encryption algorithms have
a number of advantages, AES-CCM is already used in
various data communications protocols by IEEE working
groups and has already been proposed as an encryption
standard by NIST. Therefore, it is accepted as the
symmetric key cryptography algorithm of IEEE 1609.2 [2].

4. FPGA Implementation

In this section, we introduce the hardware implemen-
tation of the proposed AES encryption, which is a critical
and important module for AES-CCM, followed by the
complete AES-CCM architecture design using the
proposed AES module.

4.1 Hardware Design for AES
An optimized AES design is crucial to the performance

of the entire AES-CCM, because CBC-MAC and the
counter in AES-CCM are processed by the AES algorithm
as explained in the previous sections.

AES-CCM does not require a separate AES decryption
process for the data decryption–verification process. The
generation–encryption process and the decryption–
verification process in AES-CCM can be performed by
using only the AES encryption process. Therefore, we
focus on efficient design of the AES encryption structure.
In addition, we use the 128-bit key length for the AES
algorithm, because AES-CCM for IEEE 1609.2 only
requires 128-bit key length operations.

Fig. 3 shows the proposed key expansion architecture
for AES. The key value (KEY_Input) is entered into the
encrypted key tables (Key_Tbl) through registers
(AES_KEY), and the expanded key is generated on the
basis of the index from the controller through the key
expansion operations. As mentioned, it is a 128-bit key
length architecture, and the expanded key data are saved
into the specific key table registers, Key_Tbl. The reason
for saving the expanded key data is that the expanded key
data remain unchanged until the input key data are
modified. We can remove additional clocks for the key
expansion processes by excluding the initial key expansion
process using the proposed key-saving method.

The key expansion process should be performed with a
32-bit unit. However, the first column of each round is
processed with only an eight-bit unit because of the
SubByte operation. Therefore, the processing of the first
column requires four clock cycles. To resolve this problem
and improve performance, four–S_Box parallelism in the
hardware architecture with an eight-bit unit that requires
only one clock cycle can be considered. However, this
approach is not efficient, because it consumes significant
hardware resources in order to save the time consumed by
only 30 clock cycles.

Fig. 2. AES-CCM structure.

Fig. 3. Proposed key expansion structure.

Jeong et al.: Efficient FPGA Implementation of AES-CCM for IEEE 1609.2 Vehicle Communications Security

136

Fig. 4 shows the standard architecture of the AES
encryption process. The formatted data, AES_Input_Data,
are entered and the temporal AES data are saved into
buffers through AES operations for the next round. The
initial round performs a simple bit-wise XOR operation
with 0th expanded key data in the key tables (Key_Tbl) and
AES_Input_Data. The final valid data are ready after 11
rounds.

The eight-bit operation modules of SubByte and
ShiftRow in Fig. 4 (red box) are replaced with the
proposed 32-bit structures shown in Fig. 5. The
implemented AES encryption operates in the following
order with the proposed 32-bit architecture: ShiftRow,
SubByte, mix column, and add round key. As shown in
Figs. 4 and 5, the processing order is not the same as that
for the AES encryption standard shown in Fig. 1. The
reason for the order change is to re-use these modules in
the decryption process. In fact, our AES encryption design
considers the decryption process, as well. In other words,
the AES encryption module can be used in the AES
decryption process without any design modification.
Therefore, to use it in the decryption process, an inversion
of the sequence of the encryption round is required. Hence,
our AES design has the reversed SubByte and ShiftRow
operations in the encryption process. However, the order
between ShiftRow and SubByte does not affect the
encryption result. This order inversion is called an
equivalent inverse cipher [12, 13].

In this paper, because the 32-bit S_Box can perform an
eight-bit SubByte function, we use a single S_Box for the
SubByte operation of both the eight-bit substitution in key
expansion and the 32-bit substitution in AES. The reason
for the 32-bit implementation is to remove the delay
penalty of SubByte in the eight-bit operation. In the eight-
bit SubByte operation, 223 clock cycles are consumed to
encrypt 128-bit plaintext. However, only 73 clock cycles

are required to encrypt the same plaintext with the 32-bit
SubByte. That means the 32-bit implementation is three
times faster than the eight-bit implementation. Therefore,
the 32-bit data path is a suitable structure for high-
performance AES hardware implementation. The path in
the red box of Fig. 4 is the critical path of the standard
AES structure. As explained above, this path is replaced by
the 32-bit data path in the proposed architecture, as shown
in Fig. 5. To process the SubByte operation, 16-byte
registers are required, and they yield additional 16 clock
delays, because the SubByte operation is a byte-wise
operation and ShiftRow is a row-wise operation. Therefore,
the ShiftRow operation waits until the SubByte operation
is completed. However, the delay penalty in the standard
architecture can be reduced by changing the order of
SubByte, ShiftRow, and the 32-bit SubByte operation,
which follows the order of ShiftRow in the proposed
architecture. In this paper, the S_Box in Figs. 3 and 5 is the
same module, because one S_Box can be shared by AES
encryption and the key expansion.

The finite state machine (FSM) of the AES operation is
shown in Fig. 6. During the READY state, if the do_expd
control signal becomes true, then the state is changed to
the KEY state, and the key expansion operation is
performed. If the do_expd signal is false and the do_aes
control signal is true, then the key expansion is skipped,
and AES is performed directly. Whenever the key
expansion is finished, the do_aes signal will be set to true,
and the execution of AES will begin. When AES is
completed, the text_valid signal is set to true, and the state
will return to READY for the next encryption. The key
expansion requires an eight-bit substitution operation. In
addition, key expansion and AES spend nine clock cycles
and seven clock cycles, respectively, for each round.
Therefore, KEY and AES must be separated in our design.

4.2 Hardware Design for AES-CCM
As explained in the previous sections, for the AES-

CCM implementation, both the CBC-MAC module and
the counter module are required.

Fig. 4. Standard AES structure and 8 bits operation.

Fig. 5. Proposed simplified 32-bit operation structure
for AES.

Fig. 6. Finite state machine for AES operation.

Fig. 7. Proposed CBC-MAC architecture used in AES-
CCM.

IEIE Transactions on Smart Processing and Computing, vol. 6, no. 2, April 2017

137

Fig. 7 shows the structure of the CBC-MAC module.
CBC-MAC performs the AES encryption (i.e.,
AES_Cipher) using chaining block data, which is the result
of an XOR operation with the encrypted data and the
current formatted block data. However, the first chaining
block does not require an XOR operation, because it does
not contain encrypted data; it only has the current
formatted data. Therefore, AES is performed directly for
the first chaining data. The CBC-MAC process is the most
critical function block in AES-CCM, because it requires as
many iterations as nonce data, associated data, and payload
data.

Fig. 8 presents the architecture of the counter module.
Different from the CBC-MAC module, the counter module
performs AES encryption with 128-bit counter block data
(counter block). The counter block is made up of nonce
data and counter values. An XOR operation is performed
between the encrypted counter block from AES_Cipher
and the formatted payload data (formatted block) to obtain
the final encrypted data, Ciphertext. The first counter
block is XOR-ed with the CBC-MAC result (MAC data) to
generate the MIC data.

Fig. 9 shows the finite state machine of AES-CCM.
During the READY state, if the payload length (Plen) is
not equal to 0, and the i_do_cbc control signal is true, then
the state transits to FORMAT and performs the formatting
function. When the number of generated formatting block
counters (parsing_counter) equals the number of total
block counters (total_block_num), then the state transits
to the KEY_EXP state. Furthermore, the KEY_EXP state
expands the input key based on the key length, and the
state moves to the DO_AES state when the key expansion
is completed. The DO_AES state encrypts the formatted
block data using the AES algorithm and transits to the
NEXT_DATA state when the text becomes valid
(text_valid). The DO_AES state can transit to the
CBC_DONE state whenever the amount of encrypted data
(enc_block_counter) and the total number of blocks
(total_block_num) are the same. Otherwise, the
NEXT_DATA state returns to the DO_AES state and
performs AES encryption until the CBC_DONE condition

is satisfied.
Fig. 10 shows the finite state machine of the formatting

function used in AES-CCM. This operation is part of the
FORMAT state in the AES-CCM finite state machine, as
shown in Fig. 9. During the READY state, when the
do_format control signal becomes true, the state transits to
the FIRST_BLOCK and generates a flag octet of the first
block of the formatting and moves to the S_NONCE state.
Otherwise, the state returns to the READY state. In the
S_NONCE state, the first block is generated completely
by using the flag octet, nonce data, and payload length.
When the S_NONCE state is executed, if the associated
data flag (A_flag) control signal is true and the data_type
is T_ASSOCIATE, then the state transits to the
ASSOCIATE state. The ASSOCIATE state performs the
formatting function using the associated data, and the state
changes to the PAYLOAD state if the data_type is
T_PAYLOAD. The PAYLOAD state performs the
payload data formatting.

If A_flag is false when the S_NONCE state is
executed, the PAYLOAD state starts directly and
generates the formatted payload data. In the PAYLOAD
state, the system generates the formatted data until the
payload data length (Plen) equals 0. When Plen equals 0,
the state returns to the READY state and waits until the
next data become available. Furthermore, the
FIRST_BLOCK state and the S_NONCE state return to
the READY state directly when the do_format control
signal becomes false.

5. Result

In this study, we used a Xilinx Virtex-5 FPGA chip and
an ISE 14.5 synthesis tool [15, 16] to implement the

Fig. 8. Proposed counter architecture used in the AES-
CCM.

Fig. 9. Finite state machine for the proposed AES-CCM.

Table 3. Register File Usage.
Register File Name Width (bit) Depth

Input_data 128 16.7
Input_register 8 256

Parser_memory 128 256
Key_box 128 22

Ctr_memory 128 256

Fig. 10. Finite state machine for the formatting
function.

Jeong et al.: Efficient FPGA Implementation of AES-CCM for IEEE 1609.2 Vehicle Communications Security

138

proposed AES-CCM system. The FPGA hardware
implementation is summarized and compared with other
designs in Table 2. As shown in the table, the number of
slice registers is 11,913 with a 166.2 MHz system clock.
The number of look-up tables (LUT) and flip flops (F/F)
used in the synthesized design is 24,062 and 31,461,
respectively.

Furthermore, the register file usage and size are
summarized in Table 3. As shown in Tables 2 and 3, the
proposed design uses more register slices than previous
works. The reason for the higher usage of FPGA resource
and register files is that both the input data and the
processed data are saved in the register files in our design.
Therefore, the system occupies a number of registers and
LUTs. Even with such a high usage of resources, we can
achieve fast operating speed by using the proposed parallel
architectures and pipelining approaches in the long paths.
In addition to the higher speed, such an FPGA
implementation method (in which the processed data are
saved inside the system) is safer from the perspective of
protecting the encrypted data from external attacks than by
saving data outside the system.

As mentioned, the entire AES-CCM process must be
finished in 565.5 μs to send VC messages without
congestion. Our proposed AES-CCM hardware results in a
delay of 132.4 ns for 1-byte payload data (i.e., it requires
only 133 μs to encrypt 1000 bytes of payload data).
Therefore, the operation of our AES-CCM implementation
can satisfy the delay constraint of VC, and it has very low
encryption overhead.

Fig. 11 shows the register-transfer level (RTL)
synthesis result of the proposed AES-CCM
implementation in FPGA. The two AES modules are
placed parallel to CBC-MAC and the counter module, and
the FSM for AES-CCM is placed inside the CCM
controller to send control signals for the ASE-CCM
operations. The remaining blocks are interface modules for
the input and output data.

6. Conclusion

In this study, we have implemented an AES-CCM
FPGA hardware encryption module that satisfies the IEEE
1609.2 VC security service. VC inherently has a
considerable communications load, because a vehicle
communicates with many vehicle objects simultaneously.

Therefore, in addition to a reliable security service, an
efficient design of the AES-CCM module, which is an
essential security component in VC, is important. In this
paper, several design methodologies are proposed to
improve the efficiency of the AES modules and AES-
CCM. These designs are implemented using a Xilinx
Virtex-5 chip; the functional operations are confirmed via
post-map timing simulations; and the real hardware signals
are verified using Chip-scope [16]. As a result, the
implemented hardware uses 11,913 register slices and
operates with a 166.2 MHz system clock. We use internal
register files to save the input data and the processed data
to protect them from possible external attacks.

Acknowledgement

This present research has been conducted by the
Research Grant of Kwangwoon University in 2016.

Reference

[1] R. A. Uzcátegui and G. Acosta-Marum, “WAVE: A
Tutorial,” IEEE Communications Magazine, May
2009, pp. 126-133.

[2] IEEE Std. 1609.2-2013. (April, 2013.) IEEE Standard
for Wireless Access in Vehicular Environments
Security Services for Applications and Management
Messages. Accessed Aug. 2014. Article (CrossRef
Link)

[3] T. Zhang and L. Delgrossi, Vehicle Safety Communi-
cations: Protocols, Security, and Privacy, Hoboken,
New Jersey: John Wiley Sons, Inc., 2012.

[4] P. Papadimitratos, “Secure Vehicular Communication
Systems: Design and Architecture,” IEEE Communi-
cation Magazine, vol. 46, no. 11, 2008, pp. 100-109.

[5] G. Yan, S. Olariu, and M. C. Weigle, “Providing
VANET Security Through Active Position Detec-

Table 2. FPGA implementation result and comparison
with previous works.

Device FPGA Slice Clock Frequency
(MHz)

Spartan-3 [17] 523 63.7
Virtex-2 [18] 3474 80.3
Virtex-2 [8] 1609 117.88

Virtex-4-LX [8] 1921 149
Virtex-5-LX [19] 1809 213

Virtex-5-SX [this work] 11,913 166.20

Fig. 11. RTL synthesis result of the proposed AES-
CCM.

http://standards.ieee.org/_ndstds/standard/1609.2-2013.html
http://standards.ieee.org/_ndstds/standard/1609.2-2013.html

IEIE Transactions on Smart Processing and Computing, vol. 6, no. 2, April 2017

139

tion,” Computer Communications, vol. 31, no. 12,
July 2008, pp. 2883-2897.

[6] N. Wang and Y. Huang, “A Novel Secure
Communication Scheme in Vehicular Ad Hoc
Networks,” Computer Communications, vol. 31, no.
12, July 208, pp. 2827-2837.

[7] M. Faezipour, M. Nourani, A. Saeed, and S.
Addepalli, “Progress and Challenges in Intelligent
Vehicle Area Networks,” Communications of the
ACM, vol. 55, no. 2, Feb. 2012, pp. 90-1000.

[8] I. Algredo-Badillo et al, “Efficient Hardware
Architecture for the AES-CCM Protocol of the IEEE
802.11i Standard”, Computers & Electrical
Engineering, 2010, pp. 565-577.

[9] T. Schütze, “Automotive Security: Cryptography for
Car2X Communication,” tech. rep., Rodhe &
Schwarz, Germany, Mar. 2011, pp. 1-16.

[10] E. Schoch and F. Kargl, “On the Efficiency of Secure
Beaconing in VANETs,” The 3rd ACM Conference
on Wireless Network Security, Mar. 2010, pp. 111-
116.

[11] Y. Wang et al., “Throughput and Delay Limits of
802.11p and its Influence on Highway Capacity,”
Procedia - Social and Behavioral Sciences, vol. 96,
Nov. 2013, pp. 2096-2104.

[12] W. Stallings, Cryptography and Network Security
Principles and Practices, 4th ed. Prentice Hall, 2005.

[13] NIST FIPS-197. Advanced Encryption Standard.
Accessed Aug. 2014. Article (CrossRef Link)

[14] NIST SP 800-38C. Recommendation for Block
Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality. Accessed Aug.
2014. Article (CrossRef Link)

[15] Xilinx. XST User Guide for Virtex-4, Virtex-5,
Spartan-3, and Newer CPLD Devices. Accessed Aug.
2014. Article (CrossRef Link)

[16] Xilinx. ChipScope Pro Software and Cores User
Guide. Accessed Aug. 2014. Article (CrossRef Link)

[17] A. Aziz, A. Samiah, and N. Ikram, “A Secure
Framework for Robust Secure Wireless Network
(RSN) using AES-CCMP,” The fourth International
Bhurban Conference on Applied Sciences and
Technology, 2005.

[18] N. Smyth, M. McLoone, and J. V. McCanny,
“WLAN Security Processor,” IEEE Trans. on Circ.
and Syst.-I, 2006, pp. 1506-1520.

[19] H. Rha and H. Choi, “Efficient Pipelined Multistream
AES CCMP Architecture for Wireless LAN,”
International Conference on Information Science and
Applications (ICISA), May 2012, pp. 1-5.

Chanbok Jeong received a BS from
the Computer Engineering at
Gyeongsang National University in
Feb. 2013, and received an MS in
electrical and computer engineering
from the Ulsan National Institute of
Science and Technology (UNIST),
Ulsan, Korea, in 2015. He is now with

the LG Electronics.

Youngmin Kim received a BS in
electrical engineering from Yonsei
University, Seoul, Korea, in 1999, and
an MS and a PhD in electrical
engineering from the University of
Michigan, Ann Arbor, in 2003 and
2007, respectively. He held a senior
engineer position at Qualcomm in San

Diego, CA. He is currently an Associate Professor at
Kwangwoon University, Seoul, South Korea. Prior to
joining Kwangwoon University, he was with the school of
electrical engineering and computer engineering at the
Ulsan National Institute of Science and Technology
(UNIST), Ulsan, South Korea. His research interests
include variability-aware design methodologies, design for
manufacturability, design and technology co-optimization
methodologies, and low-power and 3D IC designs.

Copyrights © 2017 The Institute of Electronics and Information Engineers

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsSPs.html
http://www.xilinx.com/support/documentation/swmanuals/xilinx14_5/xst.pdf
http://www.xilinx.com/support/ documentation/swmanuals/xilinx14_5/chipscope_pro_sw_cores_ug029.pdf

