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Abstract: Vehicles have increasingly evolved and become intelligent with convergence of 
information and communications technologies (ICT). Vehicle communications (VC) has become 
one of the major necessities for intelligent vehicles. However, VC suffers from serious security 
problems that hinder its commercialization. Hence, the IEEE 1609 Wireless Access Vehicular 
Environment (WAVE) protocol defines a security service for VC. This service includes Advanced 
Encryption Standard–Counter with CBC-MAC (AES-CCM) for data encryption in VC. A high-
speed AES-CCM crypto module is necessary, because VC requires a fast communication rate 
between vehicles. In this study, we propose and implement an efficient AES-CCM hardware 
architecture for high-speed VC. First, we propose a 32-bit substitution table (S_Box) to reduce the 
AES module latency. Second, we employ key box register files to save key expansion results. 
Third, we save the input and processed data to internal register files for secure encryption and to 
secure data from external attacks. Finally, we design a parallel architecture for both cipher block 
chaining message authentication code (CBC-MAC) and the counter module in AES-CCM to 
improve performance. For implementation of the field programmable gate array (FPGA) hardware, 
we use a Xilinx Virtex-5 FPGA chip. The entire operation of the AES-CCM module is validated by 
timing simulations in Xilinx ISE at a speed of 166.2 MHz.     
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1. Introduction 

Nowadays, many companies and researchers have been 
investigating autonomous vehicles, electric vehicles, and 
connected cars to develop the intelligent traffic system 
(ITS). Vehicle communications (VC) or networking 
technology in general is an essential element for the 
success of these systems. The IEEE developed and 
proposed the Wireless Access Vehicular Environment 
(WAVE) protocol [1, 2], which includes the IEEE 1609.2 
standard for security services to provide reliable VC. A 
security service is a critical part of VC, because VC is 
strongly related to the safety of passengers and cars. For 
example, researchers recently demonstrated that they could 
control a vehicle (e.g., the engine, brakes, and instrument 
panel) through the controller area network (CAN) bus [3, 
4]. If an attacker uses these kinds of techniques, and the 
VC network becomes vulnerable, there will be serious 

vehicle safety problems. 
Many related works go into the specifics of the 

security problem in vehicle communications. For 
example, malicious cars can broadcast fake positions 
through VC [5-7] in a classic example of “anti-social” 
behavior. These malicious cars must be detected and 
isolated to ensure the integrity of position information 
in VC. In other words, the reliability of the position 
information for cars must be protected in VC, but this 
adds significant overhead to the system. VC has a 
unique characteristic that requires rigorous real-time 
constraints. Thus, security services in VC should also 
meet timing constraints. 

Algredo-Badillo et al. [8] designed the Advanced 
Encryption Standard–Counter with Cipher Block 
Chaining-Message Authentication Code Protocol (AES-
CCMP) and implemented it in field programmable gate 
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array (FPGA) hardware for IEEE 802.11i-2004. They 
carefully analyzed the Advanced Encryption Standard–
Counter with CBC-MAC (AES-CCM) architecture to 
exploit the parallelization of some processes; this design is 
highly specialized in processing modules. They intended to 
design a fast and simple iterative AES-CCMP hardware 
architecture with low hardware requirements. The 
implemented Xilinx Virtex-4 FPGA consists of 1921 slices 
and 20 block memories and has 1.876 Gbps data 
throughput at 149 MHz. They also compared the hardware 
and software implementations in their paper. The software 
implementation had a higher frequency and throughput, 
but resulted in lower efficiency (e.g., data length per clock 
frequency) than the hardware implementation. 

The properties of Car-to-X communication (C2X) were 
investigated [9, 10]. C2X, in general, requires extremely 
low latency. In particular, at high speeds, when passive 
and active safety events occur, it requires millisecond 
latency. Thus, an additional security service is a serious 
overhead in C2X. Furthermore, cryptography plays a 
major role in securing VC because a C2X security service 
must provide an authentication and encryption method to 
protect short message data from many other vehicle 
objects. In the worst case scenario, the number of 
neighborhood cars can reach 200 with a beaconing rate of 
1–10 Hz. To protect data, each vehicle needs to have 
between 400 and 4000 verifications or decryptions per 
second to exchange data. A parallel cryptography 
architecture in FPGA hardware and a hybrid system using 
the hardware and software co-design for a C2X security 
service was proposed. 

Data throughput and minimum delay limits of the 
802.11p VC protocol were analyzed [11]. The minimum 
delay in VC for a 27 Mbps data rate with 1000 bytes of 
payload data is 565.5 μs. Therefore, overall encryption 
processing must be completed no later than the minimum 
delay requirement. 

In this paper, we design an efficient AES-CCM 
architecture by using Verilog Hardware Description 
Language (Verilog-HDL) and implement it in FPGA 
hardware. AES-CCM inherently has a significant influence 
on the workload in VC because of the repeated operations 
of the data encryption modules. To resolve this issue, we 
use a hardware implementation method for the AES-CCM 
module by proposing several design techniques in the 
FPGA to increase data processing throughput and reduce 
latency. For an efficient and effective hardware 
implementation, our main contributions can be 
summarized as follows. 

·We propose a 32-bit parallel operations unit in the 
substitution box (S_Box), which is originally an 
eight-bit unit in the standard to improve the overall 
latency of the AES module.  

·We employ key box registers to save key expansion 
results because key expansion operations are not 
always required for every AES iteration. 

·We use internal register files bearing high usage of 
FPGA slices to store the input Plaintext and the 
output Ciphertext to protect the data from external 
attack. 

·The CBC-MAC module and the AES counter in 
AES-CCM are implemented in a parallel architecture 
to improve throughput. 

 
The rest of this paper is organized as follows. Section 2 

explains the AES encryption algorithm and standard. 
Section 3 explains the methodology in AES-CCM 
implementations. Section 4 presents the FPGA designs for 
the proposed AES and AES-CCM modules. Simulation 
results are discussed in Section 5, followed by conclusions 
in Section 6. 

2. Advanced Encryption Standard 

AES is the National Institute of Standards and 
Technology (NIST) encryption standard substituting for 
the Data Encryption Standard (DES) algorithm [12, 13]. 
DES has been known to have performance limitations and 
security issues when used for VC in an ITS [12, 13]. 

To develop AES, NIST set the following standard 
criteria: minimum system resource usage, open source 
algorithm, capable of hardware and software 
implementation, robust to any security attack, low 
complexity for encryption calculation, and can be 
implemented in any system environment [12, 13]. As a 
result, AES has variable key lengths of 128, 192, and 256 
bits and a 128-bit wide input block. The inserted input key 
is expanded as shown in Table 1.  

Fig. 1 presents the general round structure of AES 
operation. The substitute bytes (SubByte) mode performs a 
byte-to-byte substitution of input data or previously 
encrypted data using a substitution table (S_Box). The 
shift row operation (ShiftRow) shifts the row-wise byte 
data according to the row index. The mix column process 
is for permutation of the column-wise bit data using a 
Galois field, GF( 82 ). Mix column is similar to ShiftRow, 
but ShiftRow is a row-wise byte permutation, and mix 
column is a column-wise bit permutation. The Galois field 
is a finite field for an AES mix column operation. Add 

Table 1. Key and Input Data Sizes of AES.

Input Key 
Size 

4 Words / 
128 Bits 

6 Words / 
192 Bits 

8 Words / 
128 Bits 

Expanded 
Key Size 

44 Words / 
1408 Bits 

52 Words / 
1664 Bits 

60 Words / 
1920 Bits 

 

 

Fig. 1. General AES round structure in AES standard.
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round key operates bit-wise XOR for the mixed column 
results with the expanded key from the key expansion 
process. Not all the processes shown in Fig. 1 are applied 
to the initial and final rounds. The add round key process 
only operates in the initial round, and the ShiftRow, 
SubByte, and add round key processes are required in the 
final round [12, 13]. AES is the critical part of AES-CCM 
performance because it is an iterative process in AES-
CCM. Therefore, careful analysis for an optimized AES 
implementation is extremely important.  

3. AES-CCM 

AES-CCM consists of the counter module and the 
cipher block chaining message authentication code (CBC-
MAC) using AES as a NIST SP 800-38C encryption 
standard. The WAVE protocol uses this AES-CCM for 
data encryption. AES-CCM is a unique symmetric key 
encryption algorithm for the WAVE 1609.2 security 
standard; thus, all payload data must be encrypted by AES-
CCM to be used under the WAVE protocol [2]. 

Fig. 2 shows the entire structure of the AES-CCM 
operation. As shown in the figure, first, the Plaintext is 
entered and formatted on the basis of the AES-CCM 
standard in the formatting function module to make a 128-
bit data pattern. Then, it is processed by the CBC-MAC 
and the counter block in parallel. Finally, the encrypted 
Ciphertext is generated from the counter block, and the 
message integrity code (MIC) data are obtained from the 
XOR operations between the CBC-MAC results (MAC 
data) and the counter block (1st counter block) results. 
CBC-MAC validates the authenticity of data by using the 
cipher block chaining method, which chains all input data; 
the chaining data are truncated from MAC data for data 
authenticity. 

The counter ensures the confidentiality of data by using 
the encryption process of the sequential counter blocks. 
The encrypted counter block is combined with nonce data 
and the counter index. The CBC-MAC and the counter use 
the same encryption key for AES-CCM data encryption 
[14]. 

AES-CCM is used in not only the IEEE 1609.2 WAVE 
security protocol but also in IEEE 802.11 and IEEE 
802.15.4. Although other data encryption algorithms have 
a number of advantages, AES-CCM is already used in 
various data communications protocols by IEEE working 
groups and has already been proposed as an encryption 
standard by NIST. Therefore, it is accepted as the 
symmetric key cryptography algorithm of IEEE 1609.2 [2]. 

4. FPGA Implementation 

In this section, we introduce the hardware implemen- 
tation of the proposed AES encryption, which is a critical 
and important module for AES-CCM, followed by the 
complete AES-CCM architecture design using the 
proposed AES module. 

 

4.1 Hardware Design for AES 
An optimized AES design is crucial to the performance 

of the entire AES-CCM, because CBC-MAC and the 
counter in AES-CCM are processed by the AES algorithm 
as explained in the previous sections. 

AES-CCM does not require a separate AES decryption 
process for the data decryption–verification process. The 
generation–encryption process and the decryption–
verification process in AES-CCM can be performed by 
using only the AES encryption process. Therefore, we 
focus on efficient design of the AES encryption structure. 
In addition, we use the 128-bit key length for the AES 
algorithm, because AES-CCM for IEEE 1609.2 only 
requires 128-bit key length operations. 

Fig. 3 shows the proposed key expansion architecture 
for AES. The key value (KEY_Input) is entered into the 
encrypted key tables (Key_Tbl) through registers 
(AES_KEY), and the expanded key is generated on the 
basis of the index from the controller through the key 
expansion operations. As mentioned, it is a 128-bit key 
length architecture, and the expanded key data are saved 
into the specific key table registers, Key_Tbl. The reason 
for saving the expanded key data is that the expanded key 
data remain unchanged until the input key data are 
modified. We can remove additional clocks for the key 
expansion processes by excluding the initial key expansion 
process using the proposed key-saving method. 

The key expansion process should be performed with a 
32-bit unit. However, the first column of each round is 
processed with only an eight-bit unit because of the 
SubByte operation. Therefore, the processing of the first 
column requires four clock cycles. To resolve this problem 
and improve performance, four–S_Box parallelism in the 
hardware architecture with an eight-bit unit that requires 
only one clock cycle can be considered. However, this 
approach is not efficient, because it consumes significant 
hardware resources in order to save the time consumed by 
only 30 clock cycles. 

Fig. 2. AES-CCM structure. 

 

Fig. 3. Proposed key expansion structure. 
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Fig. 4 shows the standard architecture of the AES 
encryption process. The formatted data, AES_Input_Data, 
are entered and the temporal AES data are saved into 
buffers through AES operations for the next round. The 
initial round performs a simple bit-wise XOR operation 
with 0th expanded key data in the key tables (Key_Tbl) and 
AES_Input_Data. The final valid data are ready after 11 
rounds. 

The eight-bit operation modules of SubByte and 
ShiftRow in Fig. 4 (red box) are replaced with the 
proposed 32-bit structures shown in Fig. 5. The 
implemented AES encryption operates in the following 
order with the proposed 32-bit architecture: ShiftRow, 
SubByte, mix column, and add round key. As shown in 
Figs. 4 and 5, the processing order is not the same as that 
for the AES encryption standard shown in Fig. 1. The 
reason for the order change is to re-use these modules in 
the decryption process. In fact, our AES encryption design 
considers the decryption process, as well. In other words, 
the AES encryption module can be used in the AES 
decryption process without any design modification. 
Therefore, to use it in the decryption process, an inversion 
of the sequence of the encryption round is required. Hence, 
our AES design has the reversed SubByte and ShiftRow 
operations in the encryption process. However, the order 
between ShiftRow and SubByte does not affect the 
encryption result. This order inversion is called an 
equivalent inverse cipher [12, 13].  

In this paper, because the 32-bit S_Box can perform an 
eight-bit SubByte function, we use a single S_Box for the 
SubByte operation of both the eight-bit substitution in key 
expansion and the 32-bit substitution in AES. The reason 
for the 32-bit implementation is to remove the delay 
penalty of SubByte in the eight-bit operation. In the eight-
bit SubByte operation, 223 clock cycles are consumed to 
encrypt 128-bit plaintext. However, only 73 clock cycles 

are required to encrypt the same plaintext with the 32-bit 
SubByte. That means the 32-bit implementation is three 
times faster than the eight-bit implementation. Therefore, 
the 32-bit data path is a suitable structure for high-
performance AES hardware implementation. The path in 
the red box of Fig. 4 is the critical path of the standard 
AES structure. As explained above, this path is replaced by 
the 32-bit data path in the proposed architecture, as shown 
in Fig. 5. To process the SubByte operation, 16-byte 
registers are required, and they yield additional 16 clock 
delays, because the SubByte operation is a byte-wise 
operation and ShiftRow is a row-wise operation. Therefore, 
the ShiftRow operation waits until the SubByte operation 
is completed. However, the delay penalty in the standard 
architecture can be reduced by changing the order of 
SubByte, ShiftRow, and the 32-bit SubByte operation, 
which follows the order of ShiftRow in the proposed 
architecture. In this paper, the S_Box in Figs. 3 and 5 is the 
same module, because one S_Box can be shared by AES 
encryption and the key expansion. 

The finite state machine (FSM) of the AES operation is 
shown in Fig. 6. During the READY state, if the do_expd 
control signal becomes true, then the state is changed to 
the KEY state, and the key expansion operation is 
performed. If the do_expd signal is false and the do_aes 
control signal is true, then the key expansion is skipped, 
and AES is performed directly. Whenever the key 
expansion is finished, the do_aes signal will be set to true, 
and the execution of AES will begin. When AES is 
completed, the text_valid signal is set to true, and the state 
will return to READY for the next encryption. The key 
expansion requires an eight-bit substitution operation. In 
addition, key expansion and AES spend nine clock cycles 
and seven clock cycles, respectively, for each round. 
Therefore, KEY and AES must be separated in our design. 

4.2 Hardware Design for AES-CCM 
As explained in the previous sections, for the AES-

CCM implementation, both the CBC-MAC module and 
the counter module are required.  

Fig. 4. Standard AES structure and 8 bits operation.
 

 

Fig. 5. Proposed simplified 32-bit operation structure 
for AES. 

 

 

Fig. 6. Finite state machine for AES operation. 
 

Fig. 7. Proposed CBC-MAC architecture used in AES-
CCM. 
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Fig. 7 shows the structure of the CBC-MAC module. 
CBC-MAC performs the AES encryption (i.e., 
AES_Cipher) using chaining block data, which is the result 
of an XOR operation with the encrypted data and the 
current formatted block data. However, the first chaining 
block does not require an XOR operation, because it does 
not contain encrypted data; it only has the current 
formatted data. Therefore, AES is performed directly for 
the first chaining data. The CBC-MAC process is the most 
critical function block in AES-CCM, because it requires as 
many iterations as nonce data, associated data, and payload 
data.  

Fig. 8 presents the architecture of the counter module. 
Different from the CBC-MAC module, the counter module 
performs AES encryption with 128-bit counter block data 
(counter block). The counter block is made up of nonce 
data and counter values. An XOR operation is performed 
between the encrypted counter block from AES_Cipher 
and the formatted payload data (formatted block) to obtain 
the final encrypted data, Ciphertext. The first counter 
block is XOR-ed with the CBC-MAC result (MAC data) to 
generate the MIC data.  

Fig. 9 shows the finite state machine of AES-CCM. 
During the READY state, if the payload length (Plen) is 
not equal to 0, and the i_do_cbc control signal is true, then 
the state transits to FORMAT and performs the formatting 
function. When the number of generated formatting block 
counters (parsing_counter) equals the number of total 
block counters (total_block_num), then the state transits 
to the KEY_EXP state. Furthermore, the KEY_EXP state 
expands the input key based on the key length, and the 
state moves to the DO_AES state when the key expansion 
is completed. The DO_AES state encrypts the formatted 
block data using the AES algorithm and transits to the 
NEXT_DATA state when the text becomes valid 
(text_valid). The DO_AES state can transit to the 
CBC_DONE state whenever the amount of encrypted data 
(enc_block_counter) and the total number of blocks 
(total_block_num) are the same. Otherwise, the 
NEXT_DATA state returns to the DO_AES state and 
performs AES encryption until the CBC_DONE condition 

is satisfied. 
Fig. 10 shows the finite state machine of the formatting 

function used in AES-CCM. This operation is part of the 
FORMAT state in the AES-CCM finite state machine, as 
shown in Fig. 9. During the READY state, when the 
do_format control signal becomes true, the state transits to 
the FIRST_BLOCK and generates a flag octet of the first 
block of the formatting and moves to the S_NONCE state. 
Otherwise, the state returns to the READY state. In the 
S_NONCE state, the first block is generated completely 
by using the flag octet, nonce data, and payload length. 
When the S_NONCE state is executed, if the associated 
data flag (A_flag) control signal is true and the data_type 
is T_ASSOCIATE, then the state transits to the 
ASSOCIATE state. The ASSOCIATE state performs the 
formatting function using the associated data, and the state 
changes to the PAYLOAD state if the data_type is 
T_PAYLOAD. The PAYLOAD state performs the 
payload data formatting.     

If A_flag is false when the S_NONCE state is 
executed, the PAYLOAD state starts directly and 
generates the formatted payload data. In the PAYLOAD 
state, the system generates the formatted data until the 
payload data length (Plen) equals 0. When Plen equals 0, 
the state returns to the READY state and waits until the 
next data become available. Furthermore, the 
FIRST_BLOCK state and the S_NONCE state return to 
the READY state directly when the do_format control 
signal becomes false.  

5. Result 

In this study, we used a Xilinx Virtex-5 FPGA chip and 
an ISE 14.5 synthesis tool [15, 16] to implement the 

 

Fig. 8. Proposed counter architecture used in the AES-
CCM. 

 

 

Fig. 9. Finite state machine for the proposed AES-CCM.

 

Table 3. Register File Usage.
Register File Name Width (bit) Depth 

Input_data 128 16.7 
Input_register 8 256 

Parser_memory 128 256 
Key_box 128 22 

Ctr_memory 128 256 
 

 

Fig. 10. Finite state machine for the formatting 
function. 
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proposed AES-CCM system. The FPGA hardware 
implementation is summarized and compared with other 
designs in Table 2. As shown in the table, the number of 
slice registers is 11,913 with a 166.2 MHz system clock. 
The number of look-up tables (LUT) and flip flops (F/F) 
used in the synthesized design is 24,062 and 31,461, 
respectively. 

Furthermore, the register file usage and size are 
summarized in Table 3. As shown in Tables 2 and 3, the 
proposed design uses more register slices than previous 
works. The reason for the higher usage of FPGA resource 
and register files is that both the input data and the 
processed data are saved in the register files in our design. 
Therefore, the system occupies a number of registers and 
LUTs. Even with such a high usage of resources, we can 
achieve fast operating speed by using the proposed parallel 
architectures and pipelining approaches in the long paths. 
In addition to the higher speed, such an FPGA 
implementation method (in which the processed data are 
saved inside the system) is safer from the perspective of 
protecting the encrypted data from external attacks than by 
saving data outside the system. 

As mentioned, the entire AES-CCM process must be 
finished in 565.5 μs to send VC messages without 
congestion. Our proposed AES-CCM hardware results in a 
delay of 132.4 ns for 1-byte payload data (i.e., it requires 
only 133 μs to encrypt 1000 bytes of payload data). 
Therefore, the operation of our AES-CCM implementation 
can satisfy the delay constraint of VC, and it has very low 
encryption overhead.  

Fig. 11 shows the register-transfer level (RTL) 
synthesis result of the proposed AES-CCM 
implementation in FPGA. The two AES modules are 
placed parallel to CBC-MAC and the counter module, and 
the FSM for AES-CCM is placed inside the CCM 
controller to send control signals for the ASE-CCM 
operations. The remaining blocks are interface modules for 
the input and output data. 

6. Conclusion 

In this study, we have implemented an AES-CCM 
FPGA hardware encryption module that satisfies the IEEE 
1609.2 VC security service. VC inherently has a 
considerable communications load, because a vehicle 
communicates with many vehicle objects simultaneously. 

Therefore, in addition to a reliable security service, an 
efficient design of the AES-CCM module, which is an 
essential security component in VC, is important. In this 
paper, several design methodologies are proposed to 
improve the efficiency of the AES modules and AES-
CCM. These designs are implemented using a Xilinx 
Virtex-5 chip; the functional operations are confirmed via 
post-map timing simulations; and the real hardware signals 
are verified using Chip-scope [16]. As a result, the 
implemented hardware uses 11,913 register slices and 
operates with a 166.2 MHz system clock. We use internal 
register files to save the input data and the processed data 
to protect them from possible external attacks. 
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