• Title/Summary/Keyword: Vehicle motion

Search Result 1,114, Processing Time 0.028 seconds

Drag Torque Prediction for Automotive Wheel Bearing Seals Considering Viscoelastic as Well as Hyperelastic Material Properties (초탄성 및 점탄성 물성을 고려한 자동차용 휠 베어링 실의 드래그 토크 예측)

  • Lee, Seungpyo
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.267-273
    • /
    • 2019
  • Wheel bearings are important automotive parts that bear the vehicle weight and translate rotation motion; in addition, their seals are components that prevent grease leakage and foreign material from entering from the outside of the bearings. Recently, as the need for electric vehicles and eco-friendly vehicles has been emerging, the reduction in fuel consumption and $CO_2$ emissions are becoming the most important issues for automobile manufacturers. In the case of wheel bearings, seals are a key part of drag torque. In this study, we investigate the prediction of the drag torque taking into consideration the hyperelastic and viscoelastic material properties of automotive wheel bearing seals. Numerical analysis based on the finite element method is conducted for the deformation analyses of the seals. To improve the reliability of the rubber seal analysis, three types of rubber material properties are considered, and analysis is conducted using the hyperelastic material properties. Viscoelastic material property tests are also conducted. Deformation analysis considering the hyperelastic and viscoelastic material properties is performed, and the effects of the viscoelastic material properties are compared with the results obtained by the consideration of the hyperelastic material properties. As a result of these analyses, the drag torque is 0.29 Nm when the hyperelastic characteristics are taken into account, and the drag torque is 0.27 Nm when both the hyperelastic and viscoelastic characteristics are taken into account. Therefore, it is determined that the analysis considering both hyperelastic and viscoelastic characteristics must be performed because of its reliability in predicting the drag torque of the rubber seals.

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

Structural response of historical masonry arch bridges under different arch curvature considering soil-structure interaction

  • Altunisik, Ahmet Can;Kanbur, Burcu;Genc, Ali Fuat;Kalkan, Ebru
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • In this paper, it is aimed to present a detail investigation about the comparison of static and dynamic behavior of historical masonry arch bridges considering different arch curvature. $G{\ddot{o}}derni$ historical masonry two-span arch bridge which is located in Kulp town, Diyarbakir, Turkey is selected as a numerical application. The bridge takes part in bowless bridge group and built in large measures than the others. The restoration projects were approved and rehabilitation studies have still continued. Finite element model of the bridge is constituted with special software to determine the static and dynamic behavior. To demonstrate the arch curvature effect, the finite element model are reconstructed considering different arch curvature between 2.86 m-3.76 m for first arch and 2.64 m-3.54 m for second arch with the increment of 0.10 m, respectively. Dead and live vehicle loads are taken into account during static analyses. 1999 Kocaeli earthquake ground motion record is considered for time history analyses. The maximum displacements, principal stresses and elastic strains are compared with each other using contour diagrams. It is seen that the arch curvature has more influence on the structural response of historical masonry arch bridges. At the end of the study, it is seen that with the increasing of the arch heights, the maximum displacements, minimum principal stresses and minimum elastic strains have a decreasing trend in all analyses, in addition maximum principal stresses and maximum elastic strains have unchanging trend up to optimum geometry.

Numerical Analysis on Turning and Yaw Checking Abilities of KCS in Calm Water a Based on Free-Running Simulations (가상 자유 항주를 이용한 KCS 선형의 정수 중 선회 및 변침 성능 해석)

  • Yang, Kyung-Kyu;Kim, Yoo-Chul;Kim, Kwang-Soo;Yeon, Seong Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • To understand physical phenomena of ship maneuvering deeply, a numerical study based on computational fluid dynamics is required. A computational method that can simulate the interaction between the ship hull, propeller, and rudder will provide informative local flows during ship maneuvering tests. The analysis of local flows can be applied to improve a physical model of ship maneuvering that has been widely used in maneuvering simulations. In this study, the numerical program named as WAVIS that has been developed for ship resistance and propulsion problems is extended to simulate ship maneuvering by free-running tests. The six degree-of-freedom of ship motion is implemented based on Euler angles and the overset technique is applied to treat the moving grid of ship hull and rudder. The propulsion force due to a propeller is calculated by a panel method that is based on the lifting-surface theory. The newly extended code is applied to simulate turning and zig-zag tests of KCS and the comparison with the available experimental data has been made.

Performance Evaluation for Several Control Algorithms of the Actuating System Using G/C HILS Technique (비행 전구간 유도제어 HILS 기법을 적용한 구동제어 알고리즘 성능 평가 연구)

  • Jeon, Wan Soo;Cho, Hyeon Jin;Lee, Man Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.114-129
    • /
    • 1996
  • This paper describes the whole development phase for the underwater vehicle actuating system with high hydroload torque disturbance. This includes requirement analysis, system modeling, control algorithm design, real time implementation, test and performance evaluations. As for driving control algorithms, fuzzy logic, variable structure and PD(Proportional-Differential) algorithm were designed and implemented on board controller using a single chip microprocessor. Intel 8797. And test and performance evaluation is carried out both single test and wystem integration test. We could confirm the basic performance of actuating system through the single test and gereral developing work of any actuating systems was finished with a single performance test of actuating system without system integration test. But, we suggested that system integration test be needed. System integration test is carried out using G/C HILS(Guidance and Control Hardware-In-the -Loop Simulation) which is constituted flight motion simulator, load simulator, real time host computer and the related subsystems such as inertial navigation system, power supply system and Guidance and Control Computer etc.. The most important practical contribution of this paper is that full system characteristics such as minimal control effort, enhancement of guidance and autopilot performance by the actuating system using G/C HILS technique are investigated. Through full running G/C HILS, in spite of the passing to single tests, some control algorithm resulted in failure as to stability of full system and system time frame.

  • PDF

Drone controller using motion imagery brainwave and voice recognition (동작 상상뇌파와 음성인식을 이용한 드론 컨트롤러)

  • Park, Myeong-Chul;Oh, Dae-Sung;Han, JI-Hun;Oh, Hyo-Jun;Kim, Yu-Sin;Jeong, Jin-Yong;Park, Sang-Uk;Son, Yeong-Woong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.257-258
    • /
    • 2020
  • 기존의 드론 조작은 초보자에게 어려웠다. 초보자의 경우 드론을 조종하다가 드론이 추락하거나 장애물에 걸려 프로펠러 등의 부품들이 손상되는 경우를 빈번하게 마주한다. 본 연구에서는 초보자 또한 드론 파손의 걱정 없이 드론의 조작을 더욱 쉽게 개선시키는 것을 전제로 뇌파와 보조입력인 음성인식을 이용한 드론 컨트롤러 기술을 적용하고자 한다. 현재 대중적으로 출시되어 있는 드론의 경우 호버링 기능을 포함시켜 드론의 추락 위험을 줄여주는 기능을 탑재하고 있다. 하지만 속도가 빠른 드론의 조작에 있어 미숙한 초보자들은 장애물과의 충돌 그리고 드론 착륙 시 기체손상 등의 위험에 대비하기 힘들다. 본 논문은 이러한 문제점들을 개선하기 위해 기존의 드론 컨트롤러 대신 특정한 동작을 상상할 때 발현되는 동작상상뇌파와 음성입력을 적용한 '동작상상뇌파와 음성인식을 이용한 드론 컨트롤러' 기술을 제안한다. 기존의 드론 컨트롤러와는 다르게 빅 데이터 처리기술인 머신러닝을 이용하여 뇌파 데이터를 처리하고 그 데이터들과 입력되는 뇌파 값을 비교하여 드론을 제어한다. 또한 뇌파의 발현이 안정적이지 못하는 상황을 대비한 보조입력인 음성인식을 이용하여 드론의 기체손상을 최소화 시킬 수 있다.

  • PDF

Event-Triggered NMPC-Based Ship Collision Avoidance Algorithm Considering COLREGs (국제해상충돌예방규칙을 고려한 Event Triggered NMPC 기반의 선박 충돌 회피 알고리즘)

  • Yeongu Bae;Jaeha Choi;Jeonghong Park;Miniu Kang;Hyejin Kim;Wonkeun Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.155-164
    • /
    • 2023
  • About 75% of vessel collision accidents are caused by human error, which causes enormous economic loss, environmental pollution, and human casualties, thus research on automatic collision avoidance of vessels is being actively conducted. In addition, vessels must comply with the COLREGs rules stipulated by IMO when performing collision avoidance with other vessels in motion. In this study, the collision risk was calculated by estimating the position and velocity of other vessels through the Probabilistic Data Association Filter (PDAF) algorithm based on RADAR sensor data. When a collision risk is detected, we propose an event-triggered Nonlinear Model Predict Control (NMPC) algorithm that geometrically creates waypoints that satisfy COLREGs and follows them. To verify the proposed algorithm, simulations through MATLAB are performed.

A Smart Car Seat System Detecting and Displaying the Fastening States of the Seat Belt and ISOFIX (안전벨트와 아이소픽스의 체결 상태를 감지하여 알려주는 스마트 카시트 시스템)

  • SeungHeun Park;Sangeon Jeon;Beonghoon Kong;seunghwan Kim;Seung Hee Shin;Won-tak Seo;Jae-wan Lee;Min Ah Kim;Chang Soon Kang
    • Journal of Information Technology Services
    • /
    • v.22 no.6
    • /
    • pp.87-102
    • /
    • 2023
  • Existing child car seats do not have a monitoring means for the driver or guardian to effectively recognize the status of whether the seat belt of car seat is fastened and whether the ISOFIX of the car seat is fastened to the inside device of the vehicle. In this paper, we propose a smart car seat system which can monitor in real time, whether the seat belt of a child seated in the car seat is fastened and whether the ISOFIX of the car seat is fastened. The proposed system has been developed with a prototype, in which a Hall sensor, magnet, Bluetooth, and display device are used to detect whether these are fastened and to display the detection results. The prototype system provides the detection results as texts and alarm signal to the display for driver or guardian' smartphone in the car in motion. With functional tests of the prototype system, it was confirmed that the detection functions are properly operated, and the detection results were transmitted to the display device and smartphone via Bluetooth within 0.5 seconds. It is expected that the development system can effectively prevent safety accidents of child car seats.

Comparative Analysis of DTM Generation Method for Stream Area Using UAV-Based LiDAR and SfM (여름철 UAV 기반 LiDAR, SfM을 이용한 하천 DTM 생성 기법 비교 분석)

  • Gou, Jaejun;Lee, Hyeokjin;Park, Jinseok;Jang, Seongju;Lee, Jonghyuk;Kim, Dongwoo;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.1-14
    • /
    • 2024
  • Gaining an accurate 3D stream geometry has become feasible with Unmanned Aerial Vehicle (UAV), which is crucial for better understanding stream hydrodynamic processes. The objective of this study was to investigate series of filters to remove stream vegetation and propose the best method for generating Digital Terrain Models (DTMs) using UAV-based point clouds. A stream reach approximately 500 m of the Bokha stream in Icheon city was selected as the study area. Point clouds were obtained in August 1st, 2023, using Phantom 4 multispectral and Zenmuse L1 for Structure from Motion (SfM) and Light Detection And Ranging (LiDAR) respectively. Three vegetation filters, two morphological filters, and six composite filters which combined vegetation and morphological filters were applied in this study. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were used to assess each filters comparing with the two cross-sections measured by leveling survey. The vegetation filters performed better in SfM, especially for short vegetation areas, while the morphological filters demonstrated superior performance on LiDAR, particularly for taller vegetation areas. Overall, the composite filters combining advantages of two types of filters performed better than single filter application. The best method was the combination of Progressive TIN (PTIN) and Color Indicies of Vegetation Extraction (CIVE) for SfM, showing the smallest MAE of 0.169 m. The proposed method in this study can be utilized for constructing DTMs of stream and thus contribute to improving the accuracy of stream hydrodynamic simulations.

Study on the reduction of stick-slip noise in acrylonitrile butadiene styrene-based plastics using non-polar additives to reduce friction (마찰 저감을 위한 비극성 첨가제에 따른 acrylonitrile butadiene styrene계 플라스틱의 stick-slip 이음 저감 연구)

  • Sangjun Yeo;Yewon Jeong;Sunguk Choi;Hyojun Kim;Geonwook Park;Minyoung Shon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.49-59
    • /
    • 2024
  • Recently, the electric vehicle market is gradually growing due to strengthened environmental regulations and high oil prices. also, in internal combustion engine vehicles, the sensitivity of Buzz, Squeak, Rattle (BSR) noise is increasing as engine Noise, Vibration, and Harshness (NVH)-related noise is reduced and technology for shielding noise coming from outside is developed. In this study, the stick-slip noise that occurs in Panoramic Curved Display (PCD) of automobile was analyzed for the correlation between the surface energy of polymer plastic and the polar component. For polar polymer materials, Acrylonitrile Butadiene Styrene (ABS) and PolyCarbonate-Acrylonitrile Butadiene Styrene (PC-ABS), compound materials were fabricated and evaluated. As a result, when the polar component of the polymer plastic was 3.86 mN/m or higher, stick-slip motion occurred, and as the absolute transition slope increased in the friction behavior over time, the possibility of stick-slip noise increased and the value of the friction coefficient The greater the difference, the greater the strength of the stick-slip noise.