• Title/Summary/Keyword: Vehicle information recognition

Search Result 373, Processing Time 0.026 seconds

Driving three kinds of Course Test with RC car by Color Recognition (색깔 인식에 의한 RC car의 3가지 코스 시험 주행)

  • Lee, Jong-Min;Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • Automatic driving needs many functions such as the obstacle recognition, the lane recognition, and the lane change, etc. In this paper, we realized a system which automatically drove the three-kinds of vehicle driving course, to introduce and apply the concept of 'color recognition' that expands the scope of 'lane recognition' for vehicle driving. We made the reduced each course compared with RC(Radio Control) car size, and controlled the steering considering the position and the slope of the detection line and the speed. Because the RC car does not have the brake function, we consider the speed and the position of the detection line to stop the RC car.

Development of Ubuntu-based Raspberry Pi 3 of the image recognition system (우분투 기반 라즈베리 파이3의 영상 인식 시스템 개발)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.868-871
    • /
    • 2016
  • Recently, Unmanned vehicle and Wearable Technology using iot research is being carried out. The unmanned vehicle is the result of it technology. Robots, autonomous navigation vehicle and obstacle avoidance, data communications, power, and image processing, technology integration of a unmanned vehicle or an unmanned robot. The final goal of the unmanned vehicle manual not autonomous by destination safely and quickly reaching. This paper managed to cover One of the key skills of unmanned vehicle is to image processing. Currently battery technology of unmanned vehicle can drive for up to 1 hours. Therefore, we use the Raspberry Pi 3 to reduce power consumption to a minimum. Using the Raspberry Pi 3 and to develop an image recognition system. The goal is to propose a system that recognizes all the objects in the image received from the camera.

  • PDF

Vehicle Color Recognition Using Neural-Network (신경회로망을 이용한 차량의 색상 인식)

  • Kim, Tae-hyung;Lee, Jung-hwa;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.731-734
    • /
    • 2009
  • In this paper, we propose the method the vehicle color recognizing in the image including a vehicle. In an image, the color feature vector of a vehicle is extracted and by using the backpropagation learning algorithm, that is the multi-layer perceptron, the recognized vehicle color. By using the RGB and HSI color model the feature vector used as the input of the backpropagation learning algorithm is the feature of the color used as the input of the neural network. The color of a vehicle recognizes as the white, the silver color, the black, the red, the yellow, the blue, and the green among the color of the vehicle most very much found out as 7 colors. By using the image including a vehicle for the performance evaluation of the method proposing, the color recognition performance was experimented.

  • PDF

Recognition System of Car License Plate using Fuzzy Neural Networks (퍼지 신경망을 이용한 자동차 번호판 인식 시스템)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.313-319
    • /
    • 2007
  • In this paper, we propose a novel method to extract an area of car licence plate and codes of vehicle number from a photographed car image using features on vertical edges and a new Fuzzy neural network algorithm to recognize extracted codes. Prewitt mask is used in searching for vertical edges for detection of an area of vehicle number plate and feature information of vehicle number palate is used to eliminate image noises and extract the plate area and individual codes of vehicle number. Finally, for recognition of extracted codes, we use the proposed Fuzzy neural network algorithm, in which FCM is used as the learning structure between input and middle layers and Max_Min neural network is used as the learning structure within inhibition and output layers. Through a variety of experiments using real 150 images of vehicle, we showed that the proposed method is more efficient than others.

  • PDF

Driving Condition based Dynamic Frame Skip Method for Processing Real-time Image Recognition Methods in Smart Driver Assistance Systems (스마트 운전자 보조 시스템에서 영상인식기법의 실시간 처리를 위한 운전 상태 기반의 동적 프레임 제외 기법)

  • Son, Sanghyun;Jeon, Yongsu;Baek, Yunju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • According to evolution of technologies, many devices related to various applications were researched. The advanced driver assistance system is a famous technique effected from the evolution. The technique of driver assistance uses image recognition methods to collect exactly information around the vehicle. The computing power of driver assistance device has become more improved than in the past. However, it's difficult that processed various recognition methods at real-time. We propose new frame skip method to process various recognition methods at real-time in the limited hardware. In the previous researches, frame skip rate was set up static values, thus the number of processed frames through recognition methods was smaller. We set up the frame skip rate dynamically using a driving condition of vehicle through speed and acceleration value, in addition, the number of processed frames was maximized. The performance is improved more 32.5% than static frame skip method.

A Study on Vehicle License Plates and Character Sorting Algorithms in YOLOv5 (YOLOv5에서 자동차 번호판 및 문자 정렬 알고리즘에 관한 연구)

  • Jang, Mun-Seok;Ha, Sang-Hyun;Jeong, Seok-Chan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.555-562
    • /
    • 2021
  • In this paper, we propose a sorting method for extracting accurate license plate information, which is currently used in Korea, after detecting objects using YOLO. We propose sorting methods for the five types of vehicle license plates managed by the Ministry of Land, Infrastructure and Transport by classifying the plates with the number of lines, Korean characters, and numbers. The results of experiments with 5 license plates show that the proposed algorithm identifies all license plate types and information by focusing on the object with high reliability score in the result label file presented by YOLO and deleting unnecessary object information. The proposed method will be applicable to all systems that recognize license plates.

Multi-lane Road Recognition Model Applying Computer Vision (컴퓨터비전을 적용한 다차선 도로 인식 모델)

  • Kim, Do-Young;Jang, Jong-Wook;Jang, Sung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.317-319
    • /
    • 2021
  • In Korea, an intelligent transportation system(ITS) is established to efficiently operate traffic congestion on roads and is being used for traffic information collection and speed control systems. Currently, designated and dedicated lanes are in place to ensure traffic circulation and traffic safety, and systematic and accurate illegal vehicle crackdown systems with artificial intelligence technology are needed. In this study, we propose a vehicle number recognition model that can improve the efficiency of the traffic of designated vehicles. By applying computer vision technology, we are going to identify three-lane and four-lane multi-lane roads in real time and detect vehicle numbers by car to suggest ways to crack down on vehicles that violate the designated lane system.

  • PDF

Vehicle Start Control System using Facial Recognition Technology (안면인식 기술을 활용한 차량 시동 제어 시스템)

  • Lee, Min-hye;Kang, Sun-kyoung;Shin, Seong-yoon;Lim, Soon-ja
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.425-426
    • /
    • 2021
  • Recently, there have been frequent incidents of talent accidents caused by youth driving without a license. Driving without a license is becoming a hotbed of curiosity and challenge for some young people, and there is a limit to managing smart keys at home to prevent this. Therefore, in this paper, using the facial recognition algorithm, the face of the driver sitting in the driver's seat is compared with the information stored in advance, and the system is designed to control the engine by determining that it is a registered driver. If the registered driver authentication is successful, the matching accuracy and Unlock message are output to the LCD connected to the Raspberry Pi.

  • PDF

Advanced Driver Assistance System for the Control of Turn Signal Indicator (방향지시등 제어를 위한 운전자 지원 시스템)

  • Kim, Dae-Soon
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, a novel turn signal indication scheme is proposed and implemented to handle the turn signal of a vehicle automatically. By adopting accelerometer for the motion recognition of vehicle's momentum, the proposed way could control and manage turn signals according to the moving direction of a car when a driver forgot handling turn signal lever. The designed control system is plugged into the motorbike and tested to demonstrate improved driver's safety suitable for ADAS.

Illumination-Robust Load Lane Color Recognition based on S-color Space (조명변화에 강인한 S-색상공간 기반의 차선색상 판별 방법)

  • Baek, Seung-Hae;Jin, Yan;Lee, Geun-Mo;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.434-442
    • /
    • 2018
  • In this paper, we propose a road lane color recognition method from the image obtained from a driving vehicle. In autonomous vehicle techniques, lane information becomes more important as the level of autonomous driving such as lane departure warning and dynamic lane keeping assistance is increased. In particular the lane color recognition, especially the white and the yellow lanes, is necessary technique because it is directly related to traffic accidents. In this paper, color information of lane and road area is mapped to a 2-dimensional S-color space based on lane detection. And the center of the feature distribution is obtained by using an improved mean-shift algorithm in the S-color space. The lane color is determined by using the distance between the center coordinates of the color features of the left and right lanes and the road area. In various illumination conditions, about 97% color recognition rate is achieved.