• Title/Summary/Keyword: Vehicle emission reduction

Search Result 174, Processing Time 0.022 seconds

An Experimental Study of Smoke Reduction System using Vacuum (부압을 이용한 매연저감장치의 실험적 연구)

  • Ham, Sung-Hoon;Kwon, Young-Woong;Oh, Se-Hoon;Park, Sung-Cheon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.714-718
    • /
    • 2009
  • Over the past years, many research works have been carried out to investigate the factors which govern the performance of diesel engine. The air pollutant emission from the diesel engine is still a significant environmental concern in many countries. In the present study, new system of smoke reduction of diesel engine is proposed. This new system is using vacuum equipment and filter included moisture for capture smoke. To verificate new system experiments were performed at diesel vehicle. As a result it is founded that smoke is decreased.

An Analysis of the Effects of Fine Dust Reduction Policies on PM10 Concentration and Health Using System Dynamics (시스템다이내믹스를 활용한 미세먼지 저감 정책이 미세먼지 농도와 건강에 미치는 영향 분석)

  • Seho Lee;Jung Eun Kang;Ji-Yoon Lee;Minyeong Park;Ji Yoon Choi
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.318-337
    • /
    • 2023
  • This study utilizes system dynamics to examine the effects of fine dust reduction policies on PM10 concentration and health. System dynamics has the advantage of modeling the dynamic and circular relationship between PM10 emission sources, reduction policies, PM10 concentration, and health effect. The study created policy scenarios for Korea's representative fine dust reduction policies - industrial PM10 emission control, diesel vehicle regulation, expansion of electric vehicles, and expansion of parks and green areas - and compared the results with the 2030 baseline if the current trend is maintained. The analysis showed that the policy of supporting electric vehicles reduced PM10 concentration by 0.21 ㎍/m3 and reduced the number of people with circulatory diseases by 494, and the effect was evenly distributed across the country. The industrial emissions regulation scenario resulted in the highest PM10 concentration reduction of 0.22 ㎍/m3, but had a lower reduction in the number of people affected (358) than the EV support strategy, which could be attributed to the fact that this policy had a particularly high PM10 reduction effect in industrial areas such as Danyang-gun, Chungcheongbuk-do, and Sahagu, Busan. As a policy implication, this study suggests that it is necessary to apply fine dust policies tailored to the characteristics of local emission sources.

An Analysis on CO2 Emission and Cost Effects of Hydrogen Energy in Sedan Sector (수소에너지의 승용차부문 도입에 따른 CO2 배출 감축 및 비용효과 분석 연구)

  • Hong, Jong-Chul;Kang, Seung-Jin;Choi, Sang-Jin;Park, Sang-Young;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.9-21
    • /
    • 2009
  • As one of the alternative solution for energy and environmental issues such as climate change, energy security, oil price, etc., hydrogen energy has been getting so much attentions these days. This paper analyzed the $CO_2$ emission, costs, and energy consumptions when the hydrogen energy was introduced to transportation, specifically in Sedan sector using the energy system model, MARKAL. As results, 21.5% of $CO_2$ emission in 2040 could be reduced and additional 76 billion dollars will be needed in the high energy price scenario. The amount of energy saving mainly due to the replacement of existing car to hydrogen vehicle was 16% of the final energy consumption in 2040.

An Empirical Study on the Recognized Necessity by Vietnamese Users for the Motorcycle Inspection System (베트남 사용자가 인식하는 이륜차 검사제도 필요성에 관한 실증연구)

  • Lee, Yang-Ho;Ryu, Ki-Hyun;Son, Sung-Ho;Jung, Se-Hee
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.43-49
    • /
    • 2018
  • Southeast Asia is a strategic market for both technology and inspection system to enter simultaneously. At the core market is Vietnam which is know to have the fourth highest registration of motorcycles as of 2016. The Motorcycle Inspection System is a social regulation, furthermore, the impact of the system is delivered through indirect means such as minimization of social cost. Therefore, measurements on the perception of users on the needs for an inspection system serves as valuable data to simultaneously enter this markets. This research is an empirical study on the perception of Vietnamese users on the needs to adopt a motorcycle inspection system based on data collected through surveys and is aimed at conducting a preliminary investigation on consumer behavior in Vietnam. The empirical study conducted through surveys revealed that Vietnamese motorcycle users perceive the needs for an inspection system for maintenance, safe operations and selling used vehicles at a reasonable price. In addition, the study also verified that the safe operations factor has a moderating effect due to interaction between prevention of illegal vehicle and reduction of emission gases. This research results present implications in developing equipment adapted to the local area in order to enter into a strategic market. Moreover, it is expected that the findings will also serve as valuable data for bilateral cooperation between the two countries and the diffusion of technology.

Catalytic Technology for NOx Abatement using Ammonia (암모니아를 환원제로 이용한 NOx 저감 촉매 기술)

  • Park, Soon Hee;Lee, Kwan-Young;Cho, Sung June
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.211-224
    • /
    • 2016
  • Three way catalyst has been used extensively for the exhaust gas treatment for the internal combustion gasoline engine. While, numerous research efforts have been directed to develop various technologies for the abatement of exhaust gas from diesel engine. Diesel engine operating under lean condition produces large amount of NOx and the corresponding catalytic technology employing vanadium supported titania using ammonia has been commercialized for heavy duty vehicle. Recently, the Cu catalyst supported on zeolite has been investigated for NOx abatement using ammonia because of its critical importance for ultra low emission vehicle. The current review shows the recent trend in research and development for zeolite based copper catalysts, which are mainly used as catalysts for selective catalytic reduction using ammonia, are one of the aftertreatment technologies for effectively removing nitrogen oxides from diesel exhaust.

Health Risk Assessment with Source Apportionment of Ambient Volatile Organic Compounds in Seoul by Positive Matrix Factorization (수용체 모델(PMF)를 이용한 서울시 대기 중 VOCs의 배출원에 따른 위해성평가)

  • Kwon, Seung-Mi;Choi, Yu-Ri;Park, Myoung-Kyu;Lee, Ho-Joon;Kim, Gwang-Rae;Yoo, Seung-Sung;Cho, Seog-Ju;Shin, Jin-Ho;Shin, Yong-Seung;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.384-397
    • /
    • 2021
  • Background: With volatile organic compounds (VOCs) containing aromatic and halogenated hydrocarbons such as benzene, toluene, and xylene that can adversely affect the respiratory and cardiovascular systems when a certain concentration is reached, it is important to accurately evaluate the source and the corresponding health risk effects. Objectives: The purpose of this study is to provide scientific evidence for the city of Seoul's VOC reduction measures by confirming the risk of each VOC emission source. Methods: In 2020, 56 VOCs were measured and analyzed at one-hour intervals using an online flame ionization detector system (GC-FID) at two measuring stations in Seoul (Gangseo: GS, Bukhansan: BHS). The dominant emission source was identified using the Positive Matrix Factorization (PMF) model, and health risk assessment was performed on the main components of VOCs related to the emission source. Results: Gasoline vapor and vehicle combustion gas are the main sources of emissions in GS, a residential area in the city center, and the main sources are solvent usage and aged VOCs in BHS, a greenbelt area. The risk index ranged from 0.01 to 0.02, which is lower than the standard of 1 for both GS and BHS, and was an acceptable level of 5.71×10-7 to 2.58×10-6 for carcinogenic risk. Conclusions: In order to reduce the level of carcinogenic risk to an acceptable safe level, it is necessary to improve and reduce the emission sources of vehicle combustion and solvent usage, and eco-car policies are judged to contribute to the reduction of combustion gas as well as providing a response to climate change.

Aging Characteristics of NOx Storage and Reduction Catalyst for Lean-bum Natural Gas Vehicles (린번 천연가스자동차용 NOx 흡장촉매의 열화특성)

  • Choi, Byung-Chul;Lee, Choon-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.147-152
    • /
    • 2007
  • This study investigates the aging characteristics of NOx storage and reduction(NSR) catalyst on the emission conditions of lean burn natural gas vehicles. We designed various NSR catalysts using by the double-layer washcoat technology to increase of a surface area and a thermal durability performance of the catalysts. The experiments were conducted with 3 kinds of the NSR catalysts, which were manufactured using by a honeycomb cordierite substrate. It was found that Ba is weak in the thermal aging because it has lower melting temperature than that of precious metals (PMs). The suitable loading amount of Ba in this study should be about 42 g/L from the results of the NOx adsorption and the NOx reduction efficiency. The major reason in deactivation of the NSR catalyst is the decrease of the adsorption site owing to the agglomeration and sintering of Ba rather than PM aging by hydrothermal aging. It was confirmed by results of BET, SEM and TEM.

Analysis of Down Speeding Effect on Fuel Economy during NEDC (다운 스피딩이 NEDC 모드 연비에 미치는 기여도 산출에 관한 연구)

  • Shim, Beom-Joo;Park, Kyoung-Suk;Park, Jun-Su
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.88-94
    • /
    • 2012
  • Development trend of modern HSDI diesel engine is now focusing on low fuel consumption and emission because of strong interest in global environmental protection. Two big branches of criteria for modern diesel engine development are down sizing and down speeding. Down sizing keeps engine operation condition to the direction of higher load and thus pursuing for better thermal efficiency. But this may cause degraded vehicle dynamic performance because of reduced back up torque. Down speeding keeps engine operation condition to the direction of slightly higher load and lower engine speed. Therefore reduction of back up torque can be limited within flat torque area. This study analyzed fuel economy effect of down speeding on a vehicle powered by HSDI diesel engine in aspect of engine friction work, intake and exhaust pumping work, exhaust hat loss and thermal loss of fuel leakage of fuel injection system. Contribution factor of each engine and vehicle related parameters under basic and down speeding condition were compared and work balance of down speeding during NEDC was analyzed.

A Study on the Optimal Design for Lightweight Vehicle Dash (차량 경량화를 위한 최적설계에 관한 연구)

  • Lee, Gyung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.14-20
    • /
    • 2020
  • Currently, the automotive market is intensively researching eco-friendly vehicles such as EV vehicles and hydrogen vehicles. Further, research and developments for the future markets such as autonomous vehicles and the connective cars are coped up continuously along with the rising fuel economy regulations and the emission regulations. In this development, various sensors, batteries, and control devices are fused in order to decrease the weight of the vehicle. Moreover, since the fuel economy regulation is an issue, research on the weight reduction of body parts is underway. Therefore, in this work, a study is conducted to obtain the optimal design of the Dash part that separates the engine room and the passenger seat of the vehicle body by combining lightweight materials with high rigidity materials. The optimal design was obtained using the Finite Element Analysis. Further, AL5083 was used as the lightweight material and ASBC1470 was used for high strength materials. The parts made with this combination of materials had strength equivalent to that of the existing steel and the weight was reduced by 10%.

A Study on the Potential of CO2 Emissions Reduction Recycled Aggregate according to Transportation Plan of Waste Concrete - Focused on Daegu City and Kyungpook Area - (폐콘크리트의 수송계획에 따른 순환골재의 CO2 배출량 저감 가능성에 관한 연구 - 대구·경북지역을 중심으로 -)

  • Kim, Tae Hyun;Cha, Gi Wook;Hong, Won Hwa
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.131-138
    • /
    • 2014
  • The recent interests in securing alternative resource have increased due to environmental issues and exhaustion of natural resources. The government notices production of recycled aggregate using waste concrete as the substitute of the natural aggregate. However, It's important to reduce environmental burden being inevitably made in the process producing recycled aggregate. In this study, the scenarios of transportation distance were set in the transportation phase of production of recycled aggregate. In addition, The possibility of emissions and reduction of carbon dioxide were studied depending on the scenarios. For this study, data about a amount of waste concrete, transportation distance, kind of vehicle, the number of required vehicle, fuel efficiency of vehicle and etc were gathered from 15 companies of intermediate treatment and 60 constructions sites located in Daegu city and Kyungpook area. Based on those data, fuel consumptions and $CO_2$ emissions according to the transportation scheme of waste concrete were calculated. As a result of the study, the emission of carbon dioxide was possible to be reduced by 27.8~75.4% depending on the scenarios of transportation distance.