• Title/Summary/Keyword: Vehicle Speed and Distance

Search Result 310, Processing Time 0.026 seconds

An Investigation on Actual Condition and the Influence of Safety on Elementary School Road by Types of Urban Spatial Structure (도시공간구조 유형별 초등학교 통학로 실태 및 안전도 영향규명 연구)

  • Kim, Tae-Ho;Kim, Seung-Hyun;Lee, Soo-Il
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.71-77
    • /
    • 2013
  • This Study aims at investigating actual condition on attending school road of children and analyzing empirically the characteristics of cognition and the influence of safety on school road. This study findings are as follows : 1) Walking alone to go to school is the highest rates among Commuting Mode, and Commuting distance to school is nearly doubles than range of school zone(300 m). 2) Among characteristics of urban spatial structure affecting on influence classify safety of school road, 'Commuting Distance' has been drawn to most influential variable. Especially, there are 4 types classified by commuting distance and it became obvious that the longer the distance, the lower the safety score(under 127 m=76.9 points, Over 451 m=58.3 points). 3) As a result of investigating the influence of Safety on attending school road, Vehicle commuting speed urder 127 m as internal of school zone, and Walking and crossing convenience over 451 m as external of school zone have a lot of influence on safety cognition on school road. Therefore Safety on school road should be considering the commuting distance to school among surrounding characteristics, needed for improvement plan and program based on real safety cognition of children.

Study on Advisory Safety Speed Model Using Real-time Vehicular Data (실시간 차량정보를 이용한 안전권고속도 산정방안에 관한 연구)

  • Jang, JeongAh;Kim, HyunSuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.443-451
    • /
    • 2010
  • This paper proposes the methodology about advisory safety speed based on real-time vehicular data collected from highway. The proposed model is useful information to drivers by appling seamless wireless communication and being collected from ECU(Engine Control Unit) equipment in every vehicle. Furthermore, this model also permits the use of realtime sensing data like as adverse weather and road-surface data. Here, the advisory safety speed is defined "the safety speed for drivers considering the time-dependent traffic condition and road-surface state parameter at uniform section", and the advisory safety speed model is developed by considering the parameters: inter-vehicles safe stopping distance, statistical vehicle speed, and real-time road-surface data. This model is evaluated by using the simulation technique for exploring the relationships between advisory safety speed and the dependent parameters like as traffic parameters(smooth condition and traffic jam), incident parameters(no-accident and accident) and road-surface parameters(dry, wet, snow). A simulation's results based on 12 scenarios show significant relationships and trends between 3 parameters and advisory safety speed. This model suggests that the advisory safety speed has more higher than average travel speed and is changeable by changing real-time incident states and road-surface states. The purpose of the research is to prove the new safety related services which are applicable in SMART Highway as traffic and IT convergence technology.

The Effects of Horizontal Curves on Vehicle Speeds and Accidents (평면곡선부의 속도 및 교통사고 영향분석연구)

  • 이점호;이동민;최재성
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.35-43
    • /
    • 2000
  • The Purpose of this Paper was to study the relationship between the change of operating speeds and the accidents on horizontal curves. For this purpose, we divided a horizontal curve section into two parts, a tangent section and a curve section, to estimate the operating speed for each vehicle. For studying relationship between the change of speed and geometric effect, the free-flow speed was used. The location and speed for the lowest speed were studied. Also, we analyzed the relationship between the change of operating speeds and the accidents. The followings are resulted in this study. First, drivers tend to reduce speeds significantly before they reach a curve. And the lowest speed was recorded at the downstream of the Point of curve (PC) due to the limited sight-distance of drivers on curve. Second, the larger the change of operating speeds become, the greater frequency of accident was recorded. These results can be used for developing the safety index on highways to check the design consistency.

  • PDF

An Analysis on the Prevention Effects of Forward and Chain Collision based on Vehicle-to-Vehicle Communication (차량 간 통신 기반 전방추돌 및 연쇄추돌 방지 효과 분석)

  • Jung, Sung-Dae;Kim, Tae-Oh;Lee, Sang-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.36-43
    • /
    • 2011
  • The forward collision of vehicles in high speed can cause a chain collisions and high fatality rate. Most of the forward collisions are caused by insufficient braking distance due to detection time of driver and safe distance. Also, accumulated detection time of driver is cause of chain collisions after the forward collision. The FVCWS prevents the forward collision by maintaining the safety distance inter-vehicle and reducing detection time of driver. However the FVCWS can cause chain collisions because the system that interacts only forward vehicle has accumulated detection time of driver. In this paper, we analyze forward and chain collisions of normal vehicles and FVCWS vehicles on static traveling scenario. And then, we analyze and compare V2V based FVCWS with them after explaining the system. The V2V FVCWS reduces detection time of driver alike FVCWS as well as remove accumulated detection time of driver by broadcasting emergence message to backward vehicles at the same time. Therefore, the system decrease possibility of forward and chain collisions. All backward normal vehicles and 3~4 backward FVCWS vehicles have possibility of forward and chain collisions in result of analysis. However V2V FVCWS vehicles almost do not chain collisions in the result.

The Noise Effect of a Skirt on Rolling-stock (고속철도 차량의 스커트 장착에 의한 실내.외 소음 영향 분석)

  • Kim, Tae-Min;Kim, Jeung-Tae;Kim, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.499-504
    • /
    • 2012
  • The high-speed train enjoys widespread acceptance as environment-friendly means of medium- to long-distance transportation. The pursuit of higher speed and lighter weight in railroad vehicles has engendered higher noise level. In particular, the environmental noise places many restrictions in the operation of high-speed railroad vehicles. This research investigates the effect of installing a skirt onto a high-speed train bogie with the top speed of 400 km/hr and using High Speed EMU for the purpose of reducing the environmental noise. In order to analyze the effect of the interior noise and environmental noise due to installation of the skirt, sound level is calculated using the Ray method and Statical Energy Analysis method. The numerical calculation predicts a reduction of approximately 2 dB in the environmental noise level, but at the cost of increase of approximately 2.5 dB in the interior noise level of the vehicle.

  • PDF

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

An Application of k-Means Clustering to Vehicle Routing Problems (K-Means Clustering의 차량경로문제 적용연구)

  • Ha, Je-Min;Moon, Geeju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • This research is to develop a possible process to apply k-means clustering to an efficient vehicle routing process under time varying vehicle moving speeds. Time varying vehicle moving speeds are easy to find in metropolitan area. There is a big difference between the moving time requirements of two specific delivery points. Less delivery times are necessary if a delivery vehicle moves after or before rush hours. Various vehicle moving speeds make the efficient vehicle route search process extremely difficult to find even for near optimum routes due to the changes of required time between delivery points. Delivery area division is designed to simplify this complicated VRPs due to time various vehicle speeds. Certain divided area can be grouped into few adjacent divisions to assume that no vehicle speed change in each division. The vehicle speeds moving between two delivery points within this adjacent division can be assumed to be same. This indicates that it is possible to search optimum routes based upon the distance between two points as regular traveling salesman problems. This makes the complicated search process simple to attack since few local optimum routes can be found and then connects them to make a complete route. A possible method to divide area using k-means clustering is suggested and detailed examples are given with explanations in this paper. It is clear that the results obtained using the suggested process are more reasonable than other methods. The suggested area division process can be used to generate better area division promising improved vehicle route generations.

A Study on Running Characteristic of High-Speed Train (고속철도차량의 주행 특성에 관한 연구)

  • Han, Young-Jae;Kim, Ki-Hwan;Park, Chan-Kyoung;Park, Choon-Soo;Han, Seong-Ho;Kim, Jong-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.266-268
    • /
    • 2004
  • In this study, on-line measuring system were developed to verify performances and functions of traction system that are used in KTX(Korea Train eXpress) synthetically and efficiently, and have been measuring electric signals of vehicle as well as mechanical signals up to the present. Running-braking measuring equipment was constructed in vehicle to optimize signal acquisition and analysis ability of the measuring system. Measurement data of signal were performed acquisition, analysis and evaluation using this equipment. KRRI(Korea Railroad Research Institute) described about main specifications of measuring equipment. Also, the structure and principles as well as main circuit system were explained in brief. KRRI analyzed the characteristics comparing design values with experimental values about running distance, running time and positive acceleration for KTX is running in full traction. We analyzed the distance and time according to number of motor block. In result, running characteristics of traction system in KTX were verified and could be evaluated.

  • PDF

Identifying Roadway Sections Influenced by Speed Humps Using Survival Analysis (생존분석을 활용한 과속방지턱 영향구간 분석)

  • YOON, Gyugeun;JANG, Youlim;KHO, Seung-Young;LEE, Chungwon
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.261-277
    • /
    • 2017
  • This study defines influencing sections as the part of the road section where passing vehicles are traveling with the lower speed compared to speed limit due to speed humps. The influencing section was divided into 3 parts; influencing section before the speed hump, interval section, and influencing section after the speed hump. This analysis focused on the changes of each part depending on installation types, vehicle types, and daytime or nighttime. For the interval section, especially, the ratio of distance traveled with lower speed than speed limit to interval section is defined as effective influencing section ratio to be analyzed. Vehicle speed profiles were collected with a speed gun to extract influencing section lengths. The survival analysis was applied and estimated survival functions are compared with each other by several statistical tests. As a consequence, the average length of influencing section on the 50m sequential speed humps was 75.3% longer during the deceleration than that of isolated speed hump, and 18.9% during the acceleration. The effective influencing section ratio for the 30m and 50m sequential speed humps had a small difference of 81.0% and 76.0% while the absolute values of the section that passing speed were less than the speed limit were longer on 50m sequential speed humps, each being 24.3m and 38.0m. Using the log rank test, it was evident that sequential speed humps were more effective to increase the length of influencing sections compared to the isolated speed hump. Vehicle type was the strong factor for influencing section length on the isolated speed hump, but daytime or nighttime was not the effective one. This research result can be used for improving the efficiency selecting the installation point of speed humps for road safety and estimating the standard of the distance between sequential speed humps.

Visibility detection approach to road scene foggy images

  • Guo, Fan;Peng, Hui;Tang, Jin;Zou, Beiji;Tang, Chenggong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4419-4441
    • /
    • 2016
  • A cause of vehicle accidents is the reduced visibility due to bad weather conditions such as fog. Therefore, an onboard vision system should take visibility detection into account. In this paper, we propose a simple and effective approach for measuring the visibility distance using a single camera placed onboard a moving vehicle. The proposed algorithm is controlled by a few parameters and mainly includes camera parameter estimation, region of interest (ROI) estimation and visibility computation. Thanks to the ROI extraction, the position of the inflection point may be measured in practice. Thus, combined with the estimated camera parameters, the visibility distance of the input foggy image can be computed with a single camera and just the presence of road and sky in the scene. To assess the accuracy of the proposed approach, a reference target based visibility detection method is also introduced. The comparative study and quantitative evaluation show that the proposed method can obtain good visibility detection results with relatively fast speed.