• Title/Summary/Keyword: Vector representation

Search Result 288, Processing Time 0.023 seconds

Improved Transmission Path Visualization of Vibration Power Flow for Stiffened Plate Using Streamlines Representation (유선 표현법을 이용한 보강판의 진동파워흐름에 대한 개선된 전달경로 가시화)

  • Fawazi, Noor;Jeong, Un-Chang;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.692-700
    • /
    • 2012
  • Vibration intensity has been used to localize vibration source of a vibrating system. Not only that, vibration intensity has also been used for structural diagnostic in identifying crack and mounted stiffeners. To clearly identify the location of vibration source and understand the changes of energy transmission path, clear flow visualization is required. Most of previous works used vectors to indicate the magnitude and direction of emerging vibration energy and transmission paths. However, due to the large surface area of a plate like-structure, clear transmission paths cannot be achieved using vector visualization. This becomes an issue when detail vector flow at all locations of the whole plate surface is required. In this study, streamlines visualization is used to clearly indicate the power flow transmission path at all plate surface. By using streamlines representation, not only clear transmission paths are obtained, but also improves the vector visualization which helps us to understand the changes of the energy flow especially for stiffened plates. In this study, vibration intensity computation is firstly compared to previous work to validate the vibration intensity computation. To clearly show the power flow transmission paths, streamlines representation is shown. This representation overcomes the unclear vector direction especially for stiffened plates. Different pattern of energy transmission path can be observed using streamlines representation for stiffened and unstiffened plate. The complex streamlines pattern can also be observed at high resonance frequencies which is unclear by using vector representation.

An efficient multipath propagation prediction using improved vector representation (효율적 다중경로 전파 예측을 위한 Ray-Tracing의 개선된 벡터 표현법)

  • 이상호;강선미;고한석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1974-1984
    • /
    • 1999
  • In this paper, we introduce a highly efficient data structure that effectively captures the multipath phenomenon needed for accurate propagation modeling and fast propagation prediction. The proposed object representation procedure is called 'circular representation (CR)' of microwave masking objects such as buildings, to improve over the conventional vector representation (VR) form in fast ray tracing. The proposed CR encapsulates a building with a circle represented by a center point and radius. In this configuration, the CR essentially functions as the basic building block for higher geometric structures, enhancing the efficiency more than when VR is used alone. The simulation results indicate that the proposed CR scheme reduces the computational load proportionally to the number of potential scattering objects while its hierarchical structure achieves about 50% of computational load reduction in the hierarchical octree structure.

  • PDF

POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE

  • Ali, Ahmad T.;Mahmoud, S.R.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.233-251
    • /
    • 2014
  • In this paper, position vector of a spacelike slant helix with respect to standard frame are deduced in Minkowski space $E^3_1$. Some new characterizations of a spacelike slant helices are presented. Also, a vector differential equation of third order is constructed to determine position vector of an arbitrary spacelike curve. In terms of solution, we determine the parametric representation of the spacelike slant helices from the intrinsic equations. Thereafter, we apply this method to find the parametric representation of some special spacelike slant helices such as: Salkowski and anti-Salkowski curves.

A Theoretical Representation of Relaxation Processes in Complex Spin System Using Liouville Space Method

  • Kyunglae Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • For the study of relaxation processes in complex spin system, a general master equation, which can be used to simulate a vast range of pulse experiments, has been formulated using the Liouville representation of quantum mechanics. The state of a nonequilibrium spin system in magnetic field is described by a density vector in Liouville space and the time evolution of the system is followed by the application of a linear master operator to the density vector in this Liouville space. In this master equation the nuclear spin relaxation due to intramolecular dipolar interaction or randomly fluctuating field interaction is explicitly implemented as a relaxation supermatrix for a strong coupled two-spin (1/2) system. The whole dynamic information inherent in the spin system is thus contained in the density vector and the master operator. The radiofrequency pulses are applied in the same space by corresponding unitary rotational supertransformations of the density vector. If the resulting FID is analytically Fourier transformed, it is possible to represent the final nonstationary spectrum using a frequency dependent spectral vector and intensity determining shape vector. The overall algorithm including relaxation interactions is then translated into an ANSIFORTRAN computer program, which can simulate a variety of two dimensional spectra. Furthermore a new strategy is tested by simulation of multiple quantum signals to differentiate the two relaxation interaction types.

CLASSIFICATION OF EQUIVARIANT VECTOR BUNDLES OVER REAL PROJECTIVE PLANE

  • Kim, Min Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.319-335
    • /
    • 2011
  • We classify equivariant topoligical complex vector bundles over real projective plane under a compact Lie group (not necessarily effective) action. It is shown that nonequivariant Chern classes and isotropy representations at (at most) three points are sufficient to classify equivariant vector bundles over real projective plane except one case. To do it, we relate the problem to classification on two-sphere through the covering map because equivariant vector bundles over two-sphere have been already classified.

AN EINSTEIN'S CONNECTION WITH ZERO TORSION VECTOR IN EVEN-DIMENSIONAL UFT Xn

  • Lee, Jong Woo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.869-881
    • /
    • 2011
  • The main goal in the present paper is to obtain a necessary and sufficient condition for a new connection with zero torsion vector to be an Einstein's connection and derive some useful representation of the vector defining the Einstein's connection in even-dimensional UFT $X_n$.

HEISENBERG GROUPS - A UNIFYING STRUCTURE OF SIGNAL THEORY, HOLOGRAPHY AND QUANTUM INFORMATION THEORY

  • Binz, Ernst;Pods, Sonja;Schempp, Walter
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.1-57
    • /
    • 2003
  • Vector fields in three-space admit bundles of internal variables such as a Heisenberg algebra bundle. Information transmission along field lines of vector fields is described by a wave linked to the Schrodinger representation in the realm of time-frequency analysis. The preservation of local information causes geometric optics and a quantization scheme. A natural circle bundle models quantum information visualized by holographic methods. Features of this setting are applied to magnetic resonance imaging.

Backward Mapping Method for Hyperbolic Patterns (하이퍼볼릭 패턴 생성을 위한 백워드 매핑)

  • 조청운
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.213-222
    • /
    • 2003
  • Most existing algorithms adopt the forward mapping method that is based on vector representation. Problem of existing algorithms Is the exponential increase of memory usage with number of layers. This degrades the accuracy of the boundary pattern representation. Our method uses bitmap representation and does not require any additional post-processing for conversion of vector-form results to bitmap-form. A new and efficient algorithm is presented in this paper for the generation of hyperbolic patterns by means of backward mapping methods.

VECTOR GENERATORS OF THE REAL CLIFFORD ALGEBRA Cℓ0,n

  • Song, Youngkwon;Lee, Doohann
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.571-579
    • /
    • 2014
  • In this paper, we present new vector generators of a matrix subalgebra $L_{0,n}$, which is isomorphic to the Clifford algebra $C{\ell}_{0,n}$, and we obtain the matrix form of inverse of a vector in $L_{0,n}$. Moreover, we consider the solution of a linear equation $xg_2=g_2x$, where $g_2$ is a vector generator of $L_{0,n}$.

Enhanced VLAD

  • Wei, Benchang;Guan, Tao;Luo, Yawei;Duan, Liya;Yu, Junqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3272-3285
    • /
    • 2016
  • Recently, Vector of Locally Aggregated Descriptors (VLAD) has been proposed to index image by compact representations, which encodes powerful local descriptors and makes significant improvement on search performance with less memory compared against the state of art. However, its performance relies heavily on the size of the codebook which is used to generate VLAD representation. It indicates better accuracy needs higher dimensional representation. Thus, more memory overhead is needed. In this paper, we enhance VLAD image representation by using two level hierarchical-codebooks. It can provide more accurate search performance while keeping the VLAD size unchanged. In addition, hierarchical-codebooks are used to construct multiple inverted files for more accurate non-exhaustive search. Experimental results show that our method can make significant improvement on both VLAD image representation and non-exhaustive search.