Browse > Article
http://dx.doi.org/10.5831/HMJ.2014.36.2.233

POSITION VECTOR OF SPACELIKE SLANT HELICES IN MINKOWSKI 3-SPACE  

Ali, Ahmad T. (King Abdulaziz University, Faculty of Science, Department of Mathematics)
Mahmoud, S.R. (King Abdulaziz University, Faculty of Science, Department of Mathematics)
Publication Information
Honam Mathematical Journal / v.36, no.2, 2014 , pp. 233-251 More about this Journal
Abstract
In this paper, position vector of a spacelike slant helix with respect to standard frame are deduced in Minkowski space $E^3_1$. Some new characterizations of a spacelike slant helices are presented. Also, a vector differential equation of third order is constructed to determine position vector of an arbitrary spacelike curve. In terms of solution, we determine the parametric representation of the spacelike slant helices from the intrinsic equations. Thereafter, we apply this method to find the parametric representation of some special spacelike slant helices such as: Salkowski and anti-Salkowski curves.
Keywords
Minkowski 3-space; slant helix; intrinsic equations;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Ilarslan and O. Boyacioglu, Position vectors of a spacelike W-curve in Minkowski Space $E^3_1$, Bull. Korean Math. Soc., 44 (2007), 429-438.   과학기술학회마을   DOI   ScienceOn
2 K. Ilarslan, and O. Boyacioglu, Position vectors of a timelike and a null helix in Minkowski 3-space, Chaos, Solitons and Fractals, 38 (2008), 1383-1389.   DOI   ScienceOn
3 M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc., 125 (1997), 1503-1509.   DOI   ScienceOn
4 A. Ferrandez, A. Gimenez and P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys. A, 16 (2001), 4845-4863.   DOI   ScienceOn
5 J. Walrave, Curves and Surfaces in Minkowski Space, Doctoral thesis, K.U. Leuven, Faculty of Science, Leuven, 1995.
6 M.S. El Naschie, Notes on superstings and the infinite sums of Fibonacci and Lucas numbers, Chaos, Solitons and Fractals, 12 (2001), 1937-1940.   DOI   ScienceOn
7 M.S. El Naschie, Experimental and theoretial arguments for the number and mass of the Higgs particles, Chaos, Solitons and Fractals, 23 (2005), 1901-1908.   DOI   ScienceOn
8 S. Falcon and A. Plaza, On the 3-dimensional k-Fibonacci spirals, Chaos, Solitons and Fractals, 38 (2008), 993-1003.   DOI   ScienceOn
9 J. Monterde, Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geomet. Design, 26 (2009), 271-278.   DOI   ScienceOn
10 E. Salkowski, Zur transformation von raumkurven, Mathematische Annalen, 66 (1909), 517-537.   DOI
11 A. Jain, G. Wang and K.M. Vasquez, DNA triple helices: biological consequences and therapeutic potential, Biochemie, 90 (2008), 1117-1130.   DOI   ScienceOn
12 Y. Yin, T. Zhang, F. Yang and X. Qui, Geometric conditions for fractal super carbon nanotubes with strict self-similarities, Chaos, Solitons and Fractals, 37 (2008), 1257-1266.   DOI   ScienceOn
13 A.T. Ali and M. Turgut, Position vectors of a timelike general helices in Minkowski 3-space, Glob. J. Adv. Res. Class. Mod. Geom. 2(1) (2013), 1-10.
14 A.T. Ali, Spacelike Salkowski and anti-Salkowski curves with a spacelike principal normal in Minkowski 3-space, Int. J. Open Problems Comp. Math. 2 (2009), 451- 460.
15 A.T. Ali, Timelike Salkowski curves in Minkowski space $E^3_1$, J. Adv. Res. Dyn. Cont. Syst. 2 (2010), 17-26.
16 A.T. Ali, Position vectors of spacelike general helices in Minkowski 3-space, Nonl. Anal. Theory Meth. Appl. 73 (2010), 1118-1126.   DOI   ScienceOn
17 A.T. Ali and M. Turgut, Position vector of a timelike slant helix in Minkowski 3-space, J. Math. Anal. Appl. 365 (2010), 559-569.   DOI   ScienceOn
18 S. Yilmaz, Determination of spacelike curves by Vector Differential Equations in Minkowski space $E^3_1$, J. Adv. Res. Pure Math., 1 (2009), 10-14.
19 B O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
20 J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer, 2006.
21 L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Co., 1909.
22 X. Yang, High accuracy approximation of helices by quintic curve, Comput. Aided Geomet. Design, 20 (2003), 303-317.   DOI   ScienceOn
23 N. Chouaieb, A. Goriely and J.H. Maddocks, Helices, PNAS, 103 (2006), 398-403.
24 T.A. Cook, The curves of life, Constable, London 1914; Reprinted (Dover, London, 1979).
25 M. Barros, A. Ferrandez, P. Lucas and M.A. Merono, General helices in the three dimensional Lorentzian space forms, Rocky Mountain J. Math., 31 (2001), 373-388.   DOI
26 A.T. Ali and R. Lopez, Slant helices in Minkowski space $E^3_1$, J. Korean Math. Soc. 48 (2011), 159-167.   과학기술학회마을   DOI   ScienceOn
27 J.D. Watson and F.H. Crick, Molecular structures of nucleic acids, Nature, 171 (1953), 737-738.   DOI   ScienceOn